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Abstract

The main goal of this work is to study the turbulent heat tfanis a developed
channel flow using Direct Numerical Simulations (DNS). Tdesnulations solve
explicitly all the scales present in the turbulent flow seerefor moderate Reynolds
numbers, the discretization grids need to be fine enoughptuathe smallest
structures of the flow and, consequently, DNS demands lavggutational re-
sources. The flow, driven by a mean constant pressure gtadiéme streamwise
direction, is confined between two smooth, parallel and itafiwalls separated a
distance 2.

The turbulent heat transport is studied for three diffefeaw configurations.
Some of them are used as benchmark results for this work.Hife tases reported
can be summarized as:

e case A: Scalar plume from a line source in a horizontal channe

e case B: Mixed convection with the gravity vector alignednifte streamwise
direction (vertical channel).

e case C: Buoyant plume from a line source in a horizontal celann

In addition, preliminary results for a turbulent reactingyflin a fully developed
channel are also presented in section 7.

In the case B heat flux results from a temperature differeat@den the channel
walls. The gravity vector is aligned with the streamwisediion and the Grashof,
Reynolds and Prandtl numbers @e= 9.6-10°, Rg = 150 andPr = 0.71 respec-
tively. Close to thenot wall, buoyancy acts aligned to the flow direction imposed
by the mean pressure gradient so velocities are generallgased in comparison
with a purely forced convection flow. Oppositely, near toéd wall, buoyancy is
opposed to the flow and consequently velocities are deatease



UNIVERSITAT ROVIRA I VIRGILI

DIRECT NUMERICAL SIMULATION OF TURBULENT DISPERSION OF BUOYANT PLUMES IN A PRESSURE-DRIVEN CHANNEL FLOW.
Alexandre Fabregat Tomas

ISBN: 978-84-690-7781-8 / DL: T.1236-2007

Cases A and C are similar because in both casex #uid is released within a
cold background flow through a line source vertically centerethenwall-normal
direction located at the inlet. The height of the source.@58. The injectechot
fluid disperses forming a hot plume that is convected dowastrbetween the two
adiabatic walls of the channel.

The difference between cases A and C lies in the fact thatdse @& heat and
momentum are decoupled and temperature acts as an scalectibth and diffu-
sion are the only phenomena responsible for the evoluticdhe@plume. On the
other hand, in case C, buoyancy couples heat and momentuntamsequently,
the plume floats drifting upward as it advances in the chadnelto its lower den-
sity. In case C, the streamwise direction is not homogeneaause of the coupling
between heat and momentum. To guarantee developed caorsditiohe inlet of the
channel it has been necessary to attach a buffer domain gfstebthe computa-
tional domain. In this buffer domain, the momentum transpquations for a fully
developed channel are solved with the same resolution ngbé imain domain.

The results of cases A and B have been used to validate the/AWICIS CFD
code by comparison with data reported in the literature.s ™aide is written in
FORTRAN 90 and parallelized using the Message Passingfaoee(MPI-CH li-
brary). It uses the second order in time Crank-Nicholsores@hto integrate nu-
merically the transport equations which are discretizedialty using the centered
second-order finite volume approach.

The analysis of averaged turbulent quantities and the iboritons of the differ-
ent terms of the time-averaged transport equations is wsskddw how buoyancy
affects the turbulent transport of momentum and heat aloaghannel.

Finally, following a similar configuration than that of ca8ea chemical reac-
tant A released through line source reacts with a backgroeactant B following
a second order chemical reaction with Damkholer number &féliminary results
for turbulent species transport are also included in thigkwo

Special attention have been devoted to the discretizafitmaadvective terms
to avoid non-realistic values of the variables because @htbn-linearities of the
transport equations. The conservative non-reflecting darynconditions have been
implemented at the outlet to simulate the convected outflbd@mthe streamwise
direction can not be considered homogeneous, as in caser GofFmgeneous di-

iv
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rections, periodic boundary conditions have been used.

Large grid resolutions (up to 8 million grid nodes for case@uding the buffer
region) demand important computational resources. A lghiultigrid solver has
substituted the previous conjugate gradient method tesbk Poisson equation in
the pressure calculation. This step was the most expensieemns of CPU costs.
The Multigrid method efficiency has been compared with twitedent versions of
the conjugate gradient approach and it has been demonidtinatehis method is the
most efficient in terms of CPU time although the current atpar can be improved
to enhance the scalability in multiprocessor computers.
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Chapter 1
Introduction

Turbulence is a phenomenon that occurs commonly in natutdtarmodel-
ing is one of the key issues in Computational Fluid Dynam@B). Compared
with molecular diffusion, turbulence improves dramatigcdhe transport of mo-
mentum, heat and species. A turbulent flow is generally thireensional and time
dependent and its complete description requires an enai@mount of informa-
tion although in most practical situations only it is needednow the mean flow
properties.

Numerical simulations of turbulent flows may be accomplishsing different
levels of approximations yielding more or less detaileccdption of the state of the
flow. One of the simplest methods is to use semi-empiricaketations. More so-
phisticated methods involve the numerical integratiomefttme averaged transport
equations, the well-known Reynolds averaged Navier-Stekeations (RANS) ap-
proach. The Reynolds stress termﬁ’j, appear in the RANS equations as a con-
sequence of the turbulent fluctuations. Theses terms neleel hmodeled to close
the system of equations. The principal drawback of this @ggnr is that the model
represents thmeanturbulence using averaged scales. While the small scatbe of
turbulent flows tend to be universal and flow-independest/dige scales are very
strongly affected by the boundary conditions. Thus, therea universal RANS
model to solve accurately different turbulent flows.

The Direct numerical simulation (DNS) of turbulence is theststraightfor-
ward approach to the solution of turbulent flows. These satnuhs solve explicitly
all the scales of the flow so numerical grids have to be fine gimaa capture all
the structures including the smallest where the energyntken the mean flow is

1
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dissipated by the viscosity. Also, the time step for the tintegration has to be
small enough to resolve properly the minimum time scale eflibw. If the mesh is
fine enough to resolve even the smallest scales of motiorhenaumerical scheme
is designed to minimize the numerical dispersion and dasisip errors, then an ac-
curate three-dimensional, time-dependent solution ofjthverning equations com-
pletely free of modeling assumptions can be obtained. DIMBvalto compute any
guantity of interest including those that are difficult oeavmpossible to measure
in experiments. The main limitation for the DNS approachhist the number of
grid pointsN required is proportional tdl ~ R€”/4 so the increase of the Reynolds
number by a factor of two implies an increase of the companalieffort by at least
a factor of eight. An alternative to overcome this limitatis the Large-Eddy Sim-
ulation (LES) technique which can be considered to be betvid¢S and RANS.
In a LES the contribution of the large energy-carrying stuees to momentum and
energy transfer is computed directly in the computationdlghile the effect of the
smallest scale of turbulence is modeled. This allows to oseser grids reducing
the computational requirements.

The code 3DINAMICS [1] has been used to solve numericallytthasport
equations for an incompressible fluid using the finite-vaduapproach over a stag-
gered grid. All terms are discretized using second-ordetrakdifferencing. The
second-order Crank-Nicolson is used for time-discratiraand a fractional step
with multigrid as a Poisson solver is used for pressure tafcun. For some of the
simulations performed in this work it was necessary to dgvekcurate and robust
discretization scheme to deal with the large gradient regiwhere non-physical
results may be obtained due to the non-linearity of the adesterms.

Multigrid techniques have replaced the previous conjugaselient methods
for solving the pressure calculation. This step is the mostlg in terms of CPU
time. The multigrid approach has demonstrated to be fasteplving Poisson-
like systems of equations compared with other methods. AllghiFull-Multigrid
subroutine for different type of boundary conditions hasrbamplemented in the
3DINAMICS code to speed-up this step and to improve the dvesaputational
performance. The code is written in FORTRAN 90 with Messaggsihg Interface
(MPI-CH) libraries. The cluster of the ECOMMFIT researclogp that consists in
24 bi-processor AMD Opteron nodes has been used to perf@siriulations.

2
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1.1 Background

Dispersion and mixing in turbulent flows is important to aiegr of scientific
and engineering phenomena including heat transport, da¢mgaction and com-
bustion, meteorology, oceanic sciences and environmpaothitant dispersion. A
thorough understanding of scalar mixing in a turbulent flewaquired. Reviews
on the subject have been compiled by Sreenivasan [2], Sareémd Siggia [3] and
Warhatt [4].

The simulation of the dispersion from concentrated soursem interesting
topic because it may allow to predict, for example, the disipa of a contaminant
released from a smokestack in the atmospheric boundary laye

The first works carried out by Taylor [5,6], Uberoi and Camrigi] and Townsend
[8] dealt with scalar dispersion in turbulent homogenemdiaotropic turbulence.
After that, the problem became more complex when non-ipgtieas included.
Scalar transport in a developed channel is an example oftgpelof flows. Diffi-
culties are increased even more when flow inhomogeneitetsken into account.

The contaminant is released into a turbulent backgroundedle usually much
smaller than the integral scale of the velocity field. Theaskd scalar is dispersed
forming a plume that grows as it is convected downstream. fireestudies on
scalar dispersion in homogeneous and isotropic turbuleaoged out by Taylor
[5, 6], Uberoi and Corrsin [7] and Townsend [8] showed tha time-averaged
temperature profiles were Gaussian and that the developrhém plume can be
divided into three stages: the molecular diffusive rane, turbulent convective
range and the turbulent diffusive range. Although the meerperature profiles are
Gaussian, the r.m.s. profiles of the temperature turbuleatufation are not as it
was demonstrated by Wrahaft [9] and Stapountzis et al. [10].

Sawford and Hunt [11] developed a Lagrangian stochasticetaad their re-
sults were compared with the experimental data of Stap@ufit@] demonstrating
that molecular diffusion and viscosity affect the devel@mtof the thermal plume
(particularly the intensity of the temperature fluctuasipm all stages. This flow
was also studied numerically by Anand and Pope [12] usindpdhitity Density
Functions (PDF) methods and Livescu et al. [13] used DN Sumysthe dispersion
from line sources in homogeneous isotropic turbulence.

The analysis of the dispersion of a line source placed in amdgeneous turbu-
lent shear flow would help to study the effect of this anisoyron the scalar disper-

3
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sion. Experimental works were carried out by StapountzisBuitter [14], Karnik
and Tavoularis [15] and Chunk and Kyong [16] providing mead am.s. results
and detailed information about the velocity-temperatungetations, the tempera-
ture PDFs and the joint velocity-temperature PDFs. Nuraéresults for similar
experiments were carried out by Wilson et al. [17] and Cho@hdng [18].

Dispersion form line sources in boundary layers has beesidered by Shlien
and Corrsin [19]. These authors found that normalized mearpérature pro-
file downstream the source approached an asymptotic forrm whemalized ad-
equately. Paranthoén [20] deduced a rescaling schemd basthe temporal La-
grangian scale of the vertical velocity fluctuations cddiag the mean tempera-
ture profiles in a simple curve although temperature fluadnatdid not scale well.
Fackrell and Robins [21] measured variance, intermittgoestk concentration val-
ues, PDF and spectra of scalar concentration for ground kEwdted locations
in a turbulent boundary layers studying also the balancermig in the variance
and turbulent flux transport equations. Additional expemtal work in disper-
sion in turbulent boundary layers were undertaken by Legal.g22] Veeravalli
and Warhaft [23], Bara et al. [24], Tong and Warhaft [25] aridcdnt et al. [26].
Scalar transport in low-Reynolds-number channel was sitadlby Lyons and Han-
ratty [27], Papavassiliou and Hanratty [28] and Na and Hin{a9]. Kontomaris
and Hanratty [30] studied the effects of molecular diffityion a point source lo-
cated at the centerline of a turbulent channel flow. Direchaxical simulations
of dispersion from point sources in fully developed pipeédhaeen performed by
Brethouwer et al. [31]. Single and double line sources iyfdeveloped flow
were studied by Vrieling and Nieuwstadt [32]. Flows at higReynolds num-
bers and high aspect-ratio channels were studied expemthehy Lavertu and
Mydlarski [33]. In other works, the passive scalar was rsdeband absorbed at
walls [34] or the scalar fluxes were imposed at the walls [2@)ing additional
information about the turbulence statistics of tempertudNS in combination
with Lagrangian methods has been used to study heat trarfspor sources at
walls [35], [36]. Experiments of dispersion from line soescfor conserved and
reactive scalars have been carried out in homogeneouddndau[37], [9], [10].
Other authors performed numerical simulations for reldasm-conserved passive
scalars through line sources obtaining information abmitrifluence of the mixing
process on the chemical reaction rates [32], [38].

Other inhomogeneous turbulent flows have been studied byaB&and Rovel-

4



UNIVERSITAT ROVIRA I VIRGILI

DIRECT NUMERICAL SIMULATION OF TURBULENT DISPERSION OF BUOYANT PLUMES IN A PRESSURE-DRIVEN CHANNEL FLOW.
Alexandre Fabregat Tomas

ISBN: 978-84-690-7781-8 / DL: T.1236-2007

stad [39], Wang and Komori [40] and lliopoulos and Hanra#ty][

1.2 Obijectives

The main objective in this work is to study the heat turbuleabsport in a
channel flow. The basic channel flow configuration consists filow driven by a
mean pressure gradient between two parallel, smooth amsténivalls. Far from
any entrance region, the flow becomes fully developed. Uadehn condition the
streamwise and spanwise directions can be considered asgeoeous so periodic
boundary conditions can be implemented in both directions.

The fully developed channel flow results obtained with th®@Bde 3DINAM-
ICS including mean and r.m.s. profiles and mean momentuntieguzalance have
been validated by comparison with data available in liteatind it constitutes the
basic configuration for the different cases where turbutesit transfer have been
studied.

The first case studied involving turbulent heat transparesponds to the trans-
port of an scalar released from a source line located in theec®f the channel
forming a plume. Advection and diffusion are the only pheeom responsible
for the dispersion from the concentrated source. In the rezgaon, where inho-
mogeneities derived from the wall effect are not importaéingé mean profiles of
temperature in the wall-normal direction are GaussiampstiaOnce the plume ap-
proaches walls the Gaussian shape is lost. The larger theoRsynumber is the
smaller plume width is obtained. Results are compared wiliable data in liter-
ature of experimental and computational works.

The buoyancy forces appear when there are temperatureetifes within the
fluid producing density variations. The buoyancy term isuided in the momentum
transport equation so velocity and temperature becomeledupgMixed convec-
tion in vertical channel simulations were performed to it effect of buoyancy
forces acting along the streamwise direction imposed by anmpeessure gradient.
The goal of this simulation is to validate the code for theesashere forced con-
vection induced by the mean pressure gradient acts sinealtesty with buoyancy.
The comparison of results obtained with the centered an@QUIEK schemes for
the discretization of the advective terms shows the effettteonumerical diffusion
on the flow introduced by the upstream approach.

5
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If the source line releasdwmt fluid within a cold background in a horizontal
channel, the buoyancy forces drift the plume towards theatalb of the channel.
The effect of the buoyancy on the heat transport is studietpeming the results ob-
tained for the buoyant plume with those for the scalar (ottnadly buoyant) case.
Symmetry obtained in the neutrally buoyant flow for mean djtias with respect to
the channel midplane is lost when buoyancy aligned with takk-mormal direction
is included.

The comparison in terms of computational efficiency betwdifarent solvers
for Poisson equations is also another objective in this wBtkch type of equations
appear in the pressure calculation and usually represerthermost time consum-
ing steps in the algorithm. Reducing this step by using allghraultigrid solver
allows to reduce significantly the total CPU time costs. Muitl and two versions
of the conjugate gradient methods are used to solve two sffattases with analyt-
ical solution and the coupling between pressure and vglémita fully developed
channel. The results in terms of CPU time and scalabilitystwavn for different
type of discretization grids and different boundary coioais.

Finally, some simulations are performed for a turbulenttiga flow where a
reactant is released through the line source within a backgr containing another
diluted reactant. The product is formed when these two spaeact following a
second order chemical reaction. The Damkholer number éas bet to 1 and the
reaction takes place under isothermal conditions.

1.3 Transport equations

The equations governing the conservation of mass, momentéaergy and
species concentration in a Newtonian fluid flow can be wriieh:

op 0 N

a ax (pu) =0 (1.1)
o, v, 0, v 0p 0 25
a(pul)“‘axj (pulu]> = o +axj [H(zsi] 36|13<k)} +Sv (1.2)

LAll equations are written in Cartesian tensor notation

6
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d(ph)y 0 0 oT 0 (ujp)
0(pYe) O N
ot + 0_)(1 (pYaUJ) = ox; Joj + S (1.4)

wherex; are the space coordinatesjs the vector velocityp is the pressurel
is the temperaturdy is the enthalpyp is the densityy is the kinematic viscosityy
is the dynamic viscosity arklis the thermal conductivity.

The termS;j in the momentum transport equation is defined as:

1/0u O0u;
== =—+ = 1.
Si 2 <0Xj + X ) (1.5)

Su represents a source term in the momentum transport eqaarahcan in-
clude effects like gravity, Coriolis forces or buoyancy.am analogous wayy, is
the source term for the energy transport equation and mayin&kaccount the heat
released or absorbed during a chemical reaction. Fin&lgmacal reactions can be
taken into account through the tef which can be interpreted as a source term in
the mass transport equations.

The Kronecker delt&jj is defined as equal to 1 if= j and O otherwise{ is
the dissipation function defined &gdu;/dx; which is usually omitted. For perfect
gases the enthalpy can be expressdu-a£,T whereC, is the heat capacity.

The mass fraction of speciesis defined as the ratio between the density of
that species and the density of the mixture (constant fammressible fluidsyy =
Pa/P, S is the rate of creation of speciasandJy; is the molecular flux of species
a in xj-direction. In many applications one can assume that reaspecies are
dissolved in an inert carrier fluid. Furthermore, it is asedrthat the mass fractions
of the reactive species are small, i.e. dilute mixture issadgred. In that case the
mass molecular flux may be modeled with Fick’s law which reads

0Ya

o (1.6)

Joj = —PDa

where Dy is the binary diffusion coefficient between speceesand the car-
rier fluid. These parameters have been assumed constafittfoe ahemical com-
pounds. Component densipy can be replaced b@, to denote the concentration

7
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of speciesn. The concentratiolCy can either be regarded as an amount of mass
per unit volume amount of fluid. i.e~ py or one can divide by the molar mass to
obtain a concentration in terms of moles per unit volume arhotifluid. In this
case, units oy andS, change accordingly.

Finally the transport equations assuming that all the gaygiroperties are con-
stant can be rewritten as:

ou
=0 (L.7)
oy @ 10p 92U
op 1.
o g U)o FVakax T (18
oT o(uT) 0T
al 1.
& o YTaxax (1.9

0Cq  0(Cqu;j) 0%Cqy
‘|‘ - Q)a
ot 0X; 0X;j 0X;

+rq (1.10)

where the terma— (2Sj) in equation 1.2, using contlnwt)f’— (a_J) =0, has
been simplified as:

0 (0u Ouj\ 92y
0% <6—Xj+ 07&) - 0xj0xy (41

andar represents the thermal diffusivity definedoas= k/pCp.

In absence of chemical reactions between species, theomaetm is equal to
zero sorg = 0. If density only depends on temperature, for an isothesmation
and in the absence of any other external force, no sourcedgists, soSy = 0.
On the other hand, temperature differences may inducetglatiferences and this
gives rise to buoyancy. This effect is taken into accouniugh the source term
using the Boussinesq [42] approximatidfor its modellization:

Sv = —aiB (T —Tref) (1.12)

wheref is the thermal expansion coefficient defined as:

2g; is the gravity vector
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_—1/0dp
- 2(3),
For ideal gase®? = pRT, and the equation 1.13 can be simplified as follows:
1
B= T (1.14)

whereT is expressed as an absolute temperature. FinRdly,is a reference
temperature. IT = T,et N0 buoyancy effects are present.

By choosing an adequate set of characteristic scales, d senhalimensional
variables can be obtained:

« X o Ui
X = 3 u; m (1.15)

* p * t uT
p°= D2 t" = 3 (1.16)

. T-T . Cu
T = =g (1.17)

whereCy is the injection concentration for the reference reactvs,the chan-
nel half-width,AT = Ty — T¢ is the difference between hot and cold wall tempera-
ture, Ty andTc respectively, and is the friction velocity defined asg; = \/m
wherety, is the shear stress at the wall defined\as- |1 (9 (u) /9n)|,,4- The brack-
ets<> are used to denotensemble averagaglantities. The averaging procedure
is used to obtain the time averaged transport equation teaxglained in detail in
section 3.3.

Including the source terms for buoyancy, for a second orbdemical reaction
and for the heat of reaction, equations 1.7, 1.8, 1.9 and dahObe rewritten as
(from now onx notation have been omitted for sake of simplicity):

ouj
> 0 (1.18)

a; a; op 1 0% Gr
e Y P R (T 11
ot ok T o "Re 0X; 0Xj " gre (T = Teet) (1.19)
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oT oT 1 9T
5t =+ Uj a—X] = —PYRQ 76)(] o + DaYCaCg (1.20)
0Ca  , 0Ca_ 1 0°Cq
ot ' 10x;  ScRedx;ox;
where the new dimensionless parameters appearing in egedtil8, 1.19, 1.20
and 1.21 are defined in table 1.1.

+ DaCaCg (1.212)

Table 1.1: Dimensionless parameters

Reynolds number Re = ”TTES

Grashof number Gr = &?)398

\Y)
Prandtl number Pr = %

Schmidt number Sc= @LAB

Damkholer number Da = %

The definition of the Damkholer number and the units of thectien ratek,
depend on the order of reaction:

1/m\""
[k]:[§<m—ol) ] (1.22)
n—1
Da= kélfo (1.23)

wheren is the order of reaction. Far= 2 the Damkholer number is presented in
table 1.1. The chemical reaction can be expressetaB — P. The+ sign in
the source term of the mass transport equation is used teeitedihat this term will
be negative for reactants and positive for products pravitiat reaction rates are
expressed as:

ra= —DaCaCg (1.24)
re= —DaCaCg (1.25)
rR= DaCaCp (1.26)

10
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Finally Y'is a dimensional quantity that relates the heat releasedrautned in
the chemical reaction with the sensible heat of the fluids tdfined as:

AH?
= ﬁ (1.27)

This nondimensional quantity is similar to the Jakob numised to relate the
sensible to the latent heats in a boiling fluid.

11



UNIVERSITAT ROVIRA I VIRGILI

DIRECT NUMERICAL SIMULATION OF TURBULENT DISPERSION OF BUOYANT PLUMES IN A PRESSURE-DRIVEN CHANNEL FLOW.
Alexandre Fabregat Tomas

ISBN: 978-84-690-7781-8 / DL: T.1236-2007

12



UNIVERSITAT ROVIRA I VIRGILI

DIRECT NUMERICAL SIMULATION OF TURBULENT DISPERSION OF BUOYANT PLUMES IN A PRESSURE-DRIVEN CHANNEL FLOW.
Alexandre Fabregat Tomas

ISBN: 978-84-690-7781-8 / DL: T.1236-2007

Chapter 2
Physical model

The main objective of this work is to analyze the turbulerdth@ansport in
a channel flow where a hot fluid is released in the channel gir@uline source.
If the line source and the background carrying fluid haveeddiit temperatures,
the formed plume can be affected by buoyancy forces. The flafigurations
considered are based on the fully developed pressure drhaamel flow between
two parallel, infinite and smooth walls placed a distané@@art. The streamwise,
spanwise and wall-normal directions are denotex gandzrespectively. A sketch
of the domain including the coordinate system origin (tagQ¥is shown in figure
2.1

The cases considered in this work are summarized in tabieduding the grid
resolution, the Reynolds number based on the friction wgland the half width of
the channel, the Reynolds number based on the bulk velawityttee width of the
channel and the Grashof number and the reference tempefaturases B and C
where buoyancy forces are present.

The dimensions of the channel am8« 21 x 23. The two walls of the channel
are located at = —d andz = & and are considered adiabatic for cases A and C and
at fixed temperatures for case B.

The validation of the code involved the simulation of two floanfigurations

Table 2.1: Summary of flow configurations
| Case| Description | Gridresolution | Re | Res |  Gr | Ter | Buoyancy|

A Passive plume | 258x 130x 130 | 180 | 5452 - - None
B Mixed convection| 131x 101x 101 | 150 | 2725| 9.6-10° | 0.5 X
C Buoyant plume | 258x 130x 130 | 180 | 5472 107 0.0 z

13
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Figure 2.1: Sketch of the channel configuration

Ly

} L=25

Line source for
cases A and C

named case A and B for which there are results avaliable iditdrature. The

first one, case A, considers the dispersion of a passivergedd@sed in a channel
flow through a line source centered in the vertical direcasrindicated in figure
2.1. In this case the temperature can be considered as agasalar. The second
one, case B, is a mixed convection configuration with the booy force aligned

with the streamwise direction. The buoyancy force is preducy a temperature
difference imposed at the two walls of the channel. All thguits obtained for

cases A and B show good agreement with data avaliable intdratlire as shown
in section 6. The difference between cases A and C is thasmCdhe velocity and
the temperature fields are coupled by the buoyancy forcesyantthe wall-normal

direction.

2.1 Case A: Temperature line source in a channel at
Re =180

The first flow configuration considers the heat transport inlly fdeveloped
channel flow where temperature is released from a line solndhis case, named
A, there is no buoyancy and temperature acts as a passia.sddle Reynolds

14
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number isRe = 180. The molecular Prandtl numberRs = 0.71. The spanwise
direction is considered homogeneous for all variableshénstreamwise direction
homogeneity is considered for the hydrodynamic field butfapthe temperature
where non-reflecting boundary conditions are applied aotlieet. At the inlet the
source line is implemented as a spanwise band centerednmidakée of the channel
(z= 0) with a size of HgwhereHs = 0.0543. Thus, the temperature distribution is
T(0,y,zt)=To=1 Vze [-Hs,Hg andT (0,y,z,t) = T, =0, ¥z> [—Hs,Hg|.

2.2 Case B: Mixed convection aRg = 150and Gr =
9.6-10°

The configuration for the case B corresponds to a mixed coiovetully de-
veloped flow in a vertical channel with the gravity vectogakd with the stream-
wise direction where the momentum and heat transport afgedby the buoyancy
force. The molecular Prandtl number i§ 0, the Grashof number is® 10° and the
Reynolds number based on the friction velocityRig = 150. The streamwise and
spanwise directions are considered as homogeneous amdipdsbundary con-
ditions are applied for the velocity, pressure and tempeeatields. Both walls
have no-slip boundary conditions. The dimensionless teatpes on the top and
bottom walls are prescribed to Bgx,y, —9,t) = Ty = 1 andT (x,y,d,t) = Tc =0,
respectively. The dimensionless reference temperatdygris- (T + Tc) /2= 0.5.

The hydrodynamic variables have been initialized usingamsineous fields
from previous fully developed channel flow results. The temafure has been ini-
tialized with a constant distribution 8tes (no buoyancy). It was found that the
simulations are very sensitive to the initial conditionstiemperature. Difficulties
in achieving steady statistics were experienced when teatype was initialized
using a linear profile form the cold wall to the hot wall. It wiasind that for the
mixed convection cases, a very large domain along the stresardirection was
needed. If a smaller box is used no quasi-steady conditi@nse wbtained and the
bulk velocity and temperature varied with a very low frequye[%3].
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2.3 Case C: Buoyant source line in a channel g =
180and Gr = 10’

Case Cis similar to case A where a line source is verticaltyered at the chan-
nel inlet but, as it happened in case B, momentum and heabapder! through the
buoyancy term. However, in this case, the gravity vectolig;mad with thez direc-
tion (perpendicular to the walls of the channel). The pluorened by the source
line is hotter than the background colder fluid and, due todiesity differences,
the buoyancy forces deflect the plume towards the top wall.

Streamwise direction for case C is not homogeneous due todimgling be-
tween momentum and heat equations and periodic boundadytioors are no valid
in this case. To solve this issue, a buffer region has beeawhat at the inlet of
the channel section where the line source is considered bittifer region allows
to obtain the hydrodynamic fields at the inlet of the main diom&lon-reflecting
boundary conditions are implemented at the outlet for hggnamic and tempera-
ture variables. A sketch of the computational domain iniclgdhe buffer is shown
in figure 2.2. The size of the computational domain and thehrdesribution of the
buffer are the same as in the main domain. At each time stefioiuen the buffer
region is computed and the velocity and pressure distobstat the outlet of the
buffer region are used as the boundary conditions for thepcwation of the flow in
the main domain where the plume develops.

The coupling between the velocity and the temperature emsaand the con-
sequent non-homogeneity in the streamwise direction reguo implement con-
vective boundary conditions for the hydrodynamic field & tutlet of the do-
main. These boundary conditions, called non-reflectingevietroduced by Jin
and Braza [44] for two dimensional incompressible flows.

In this work, these non-reflecting boundary conditions ltsshave been ex-
tended to a three-dimensional case using an analogousiorece

Considering the characteristics of the present viscoiielflow, an anisotropic
propagation wave equation on the outlet boundary for amsprarted quantity
(velocity component, temperature, concentration...)@written as:

2 2 2 2
%t(;) a CX(?)XC;) a Cy%y? B CZ%ZC: =0 2.1)

wherecy, ¢y andc; are the characteristic velocities of the wave propagatiohe
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Figure 2.2: Buffer domain

@ Periodic boundary conditions
z Non-reflecting boundary conditions

X, y andz directions respectively. The pseudo-differential opmsare introduced:

LO = ZDZ0 + 2DZ0 + c2D20 — DO =0 (2.2)

whereDy, Dy, D, designate the partial derivatives with respeckty andz,
respectively and; to denote partial derivative with respect to time. Facttian
of the wave operatot,, gives:

LO=LTL ®@=0 (2.3)
where
LT =cDyx+DivV1—a2—b? (2.4)
and
L~ =cDy— DtV 1—a2—b? (2.5)
where

17
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_ gDy
a= D (2.6)
c;D;
— 2.7
b="F (2.7)
The relation:
LT@=0 (2.8)

applied to the outlet boundary condition is a total absorptinon-reflecting)
condition [45]. As the pseudo-differential operator is lomal in both time and
space variables, the following Padé approximation of thease rooty/1 — a2 — b?
is used:

\/1—a2—b2z1—%(a2-|—b2) (2.9)

and then equation 2.8 can be approximated as:

2 c2
<chx+Dt—2iDtD§—2—5tD§> ©=0 (2.10)

The coefficientscy, and c, appear because of the anisotropic character of the
present analysis.

Comparison of equation 2.10 with the Navier-Stokes eqnatiol9, shows that
the diffusion term in equation 2.10 is reasonably séfldRe ) (0°©/dy* + 0°0/0Z°)
and the propagation velocity is made equal to the component in order to match
this equation to the Navier-Stokes equations. In a simiky, W © represents the
temperature or the concentration of a spe€igghe coefficient multiplying the dif-
fusive term is(1/Re&Pr) or (1/R&aSq respectively.

Finally the equations for the outlet boundary can be writen
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ou  ou 1 [0%u A%u\
oT  oT 1 [3°T o°T
% Yox Repr <0y2 + 622) =0 (2.12)

Ca , % ! (02CG OZCG) =0 (2.13)

ot +u ox RaSc\ ay? + 072

These equations keep a convective/advective term for the coanponent of
velocity (the streamwise componantor the channel).

The pressure correctidh has Neumann boundary conditions for all boundaries
(inlet, walls and homogeneoysdirection) except for the outlet where no correc-
tion is applied to obtain convergence in the iterative pdoce to solve the coupling
between the velocity and the pressure fields. This non-stargiboundary condi-
tion would introduce anomalous values for the velocity atdhtlet. To correct this
and ensure continuity, the convective velocity at the d¢usleecalculated after the
pressure correction step.
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Chapter 3

Mathematical analysis

3.1 The finite volume method

Transport equations are discretized on a staggered gridtiaét pressure, tem-
perature and concentrations (scalars) calculated in thieicef a cell and the ve-
locity components defined at the cell faces.

To introduce the discretization of the transport equatigisg the finite-volume
approach, the conservation law for the transport of a scalantityin a unsteady
flow in its general form is used:

%(p(P)eriv(pU(P) = div(I" grade) + S (3.1)

By using Gauss’ divergence theorem:

/ divadV:/ﬁ-adA (3.2)
Ccv A

whereri is the vector normal to surface eleme#

By changing the order of integration in the time derivatetghe integration of
equation (3.1) over a control volume (CV) and a time diegives:

/CV [/tHAt%(p(p)dt} dV—l—/tHAt {/Aﬁ. (pU(p)dA} dt =
/tt+At {/Aﬁ. (r grad(p)dA} dt-;-/ttJrAt |i/CVSpdV:| dt (3.3)
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whererl is a diffusion coefficient.
To demonstrate the integration, the following one-dimenai equation can be
used.

/We { /t - % (P9) dt} dv + /t o [(PuAP), — (PUAG),| dt =

t+At t+AL _
/ KrAa—‘p> —<I’Aa—(p) }dt+ AVt (3.4)
t 0X ) o X/ t

The diffusive flux term is evaluated as:

do\ Qe —@p
(rA&)e_reAe< OXpE )

<FAd—(p) — Ay (cpp - (WV) (3.5)

dx 6XW =)

Here the upper-case lettefd (-~ north, E — east etc) subindices refer to the
node point and the lower case letters indicate the face golitite Navier-Stokes
equation 1.19 can now be integrated over a time Ateggnd a control volume (CV).
Figure 3.1 shows a staggered grid arrangement for a twordiimeal domain in-
dicating the scalar, the u-component and the v-componentalosolumes (dotted
lines, red pattern and blue pattern respectively). The tistaggered grids, intro-
duced by Harlow and Welch [46], prevents unrealistic pres$alds [47].

3.2 Temporal integration

3.2.1 Momentum transport equations

The numerical integration of the Navier-Stokes equaticgr®ahds special at-
tention due to the fact that it is needed to solve the cougilgtgreen pressure and
velocity. There are different methods described in liter@ato solve this coupling.
Some popular solutions are MAC [46], SIMPLE [48] and PISQO][48 this work, a
multistep procedure has been used [50-53]. In the first #tegransport equation
is solved using velocities and pressure from the currerd sitap. The velocity field
obtainedy;’, may not satisfy the continuity equation. In the secondemion step,
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Figure 3.1: Staggered grid for the finite volume approach
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i-2,j-3 i-1,j-3 ij-3 i+1,-3 i+2,j-3

dxui

continuity is forced and new pressure and velocity fieldsodmained after solving
a Poisson equation involving the pressure correctioand the divergence of the
intermediate velocity field;'.

The Navier-stokes equations without buoyancy are usetusiriite this step:

t+AL auid . t+AL P i) g
—dt V+/ / — (UjU; t) V=
/cv (/t ot ) t ( cv 0X; ()
t+AL 19p t-+At 92U,
- =Pt av / / v dt)dV 3.6
/t (/cvpaxi ) * t (cv 0X;0X; (3:6)

Integration of each ter¥p with respect to time can be written as:

t+At
|T:/ Wedt = [aWi 4 (1—a) Wi At 3.7)
t

where W3 refers to the value at timg and Wp'! at timet + At and where
the weighting parameter is % for Crank-Nicholson, which is the time integration
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scheme that has been used in this work for the momentum wereguations. The

explicit time integration scheme is given by= 0 and the fully implicit integration
is obtained witho = 1.

Finally equation (3.6) can be discretized as:

uin+1 —un

|
At
1apn+1

p O

0 (1 n+l %y
a[ 0Xj (ui Y )+V0Xjan

0 oo o2ul
+(1 cx)[ o (u uj)+Vanan (3.8)

Using an intermediate velocity one can write similarly:

b
A
0 ., . 0%ur 10p"
a {“5};(”i”j)'+\}axjaxj} —'6'5;;
0 oo o2ul

+(1—a) [_a_x,- (ufdf) +Vax,-ax,- (3.9)

Equation (3.9) is solved iteratively faf*. This velocity field does not ought to
satisfy the continuity equation.

By subtracting (3.9) from (3.8):
T

|
A

_ 0 gy U 1epMt
0([ 0x; (ui Y )*Vax,-ax,- p 0Ox

a ., . 0%u; 19p"
. {—a—xj(ui uj)+vaxjaxj} 3 (3.10)

By rearranging the previous equations udgih@s;) for the convective and diffu-
sive terms as:
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92y
0X;j0X;

H(uj) = (uuj) +v (3.11)

9
an
the error of replacing (u) by H (u™) is of second order in time [54] and thus
consistent with others errors. Equation (3.10) can be evri#ts:
(Ut —u)  ep™t ap"

A = o + ox (3.12)

p

n+1
By applying the divergence operator to equation (3.12) \%‘gﬁ = 0 one ob-
tains:

Baui* B _aan+1 aan

— = 3.13
At 0x; Ox2 + Ox2 (3.13)
The pressure correctioh is defined as
o =p"tl_p" (3.14)
so equation (3.13) can be rewritten as:
POy 00 (3.15)
At 0ox;  0XP '

This Poisson equation is solved using the multigrid proced®nced® is ob-
tained, one can calculate the new pressuite! using the relation (3.14) and go
back to equation (3.12) to find the new velociti#is®.

3.2.2 Heat and mass transport equations

The numerical integration of the transport equations haguarantee the con-
servation of heat and mass. The non-linearity of the coiweteérms can lead to
spurious oscillations of the temperature or concentrdfields in regions of the
computational domain with sharp gradients. Such osaltetimay produce values
out of the range prescribed by the inherent limits imposethbyboundary condi-
tions. In this work, these large values of the scalar grddiare expected to appear
due to the implementation of a discrete line source at thevinfloundary for cases
A and C.

For reacting flows, the reaction rates, appearing in theasoaton equations
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for the different chemical species involved, are expressed product of concen-
trations and the sign of this term indicates if the speciesnsactant that is being
consumed (negative) or a product that is being generatesiti). In this scenario,
non-physical oscillations are specially important sirieedut of range values lower
than zero may invert the reaction rate sign.

Some authors overcome this problem related with the larlyeesaf the gradi-
ents, at least partially, by setting a smooth concentratistribution at the source
[32].

It has been observed that the temporal integration of thiarstansport equa-
tions using the Crank-Nicholson scheme produces suchlaigmils for cases A
and C. The direct cutting off of these values leads to the caservation of the
guantities. To overcome this drawback for these two cabesfully explicit and
second-order in time Adams-Bashforth scheme was tested:

3 1

t+At
- :/ Wpdt = {éwg—éwg—l} At (3.16)
t

The explicit Adams-Bashforth temporal integration, usedambination with a
robust advection term discretization scheme, avoids tbgsifations. In this work
two discretization methods for the convective term havenliested: the QUICK-
EST scheme with the ULTIMATE correction [55] and the Totakiséion Dimin-
ishing with (TVD)k = 3 [56].

The use of the QUICKEST discretization scheme produces sualar values
out of range £ 0.001 %) which are removed by simply filtering their values te th
adequate limit value. Some multidimensional approaches haen developed fol-
lowing the ULTIMATE correction [57]. These techniques irope the flow-to-grid
angle dependence and the anisotropic distortion, but requiditional CPU and
communication resources. Even though, this procedureresglarger computa-
tional effort compared with the Total Variation Diminisigiand problems with the
symmetry of the time averaged temperature profiles wererexpmed.

The Total Variation Diminishing approach guarantees aomuand monotonic-
ity by an adequate limiter function in the upwind advectigeator. In this work
thek = % [56] is used where is the weighting parameter ranging forail for
the second-order accurate fully one-sided upwind scherhddothe second-order
accurate central scheme. A value between these limitssepte a blend between
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these two schemes. Monotonicity is guaranteed using adirfunction that is in-
side of Sweby’s monotonicity domain. The argument for thisction is the upwind
ratio of consecutive gradients, As example, for the east face of a control volume,
it can be written as:

r— Gir1—G+E

G—-—@G-1+E€

wherer_ is the upwind ratio of consecutive gradients at the eastdaaeontrol

volume for ag variable. The constastis set to a very small number {1019 and
it is introduced to avoid division by zero in uniform flow regis.

(3.17)

The limiter function®(r) reads:

d(r) = max<0,min(2r,min <%+§r, 2))) (3.18)

3.3 Averaged transport equations

In time dependent flows the mean of a property at time taken to be the
average of the instantaneous values of the property ovege tumber of repeated
identical experiments: the so calledsemble averag®rackets are used to denote
ensemble averaged quantities. For a instantaneous guantitp > is its ensemble
averaged value.

Flows with steady statistics are also called time-indepanhd.e. mean values
are not a function of time. It is obvious that in this case bmtbrages (ensemble
and time averages) should give the same results. The tintageak value of an
instantaneous quantityis defined as:

1 At
®— E/o o(t)dt (3.19)

where® is the mean value anit is supposed to be much larger than the largest
time scale of the flow (that corresponding to the largest floaley. Thus, any
quantity can be expressed as the sum of a mean and a flucttextimgso(Xt) =
®(X) + @ (X,t) whereq is the time-varying fluctuation. This fluctuation has, by
definition, a mean value equal to zero:

o 1 At
qx:E/o ¢(t)dt=0 (3.20)
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where an overbag have been used to denote time-averaging operation. Another
important statistical parameter is the root-mean-squareq.) of the fluctuations
defined as:

At
This statistic which gives indication of the intensity oketfluctuations is in
practice evaluated as:

Gms = \/ (¢)% = { ! /Om (d)zdt} . (3.21)

— 2
Gms=\/ P — @ (3.22)
Following this approach for the pressure and the velocityponents, they can
be writtenapp=P+p,u=U+U,v=V +V,w=W+Ww, and the time averaged
momentum equations (without source terms) leads to:

Ui AU  oP 1 o Oul;

Bt Iax 0% Reowdx | ox

(3.23)

The averaging of the momentum equations gives rise to nera éxtms: Six
new additional stresseu$—u’j . These terms are thReynolds stressemd equations
3.23 are called thReynolds equations

The time averaged momentum equations governing the fullgldped turbu-
lent channel flow without buoyancy can be written as:

o 0P ouw 1 0U?

~% oz RadZ (3:24)
oP  ow?
0= % or (3.25)
The integration of 3.25 yields:
P+w2="P, (3.26)

whereP is a function ofx only. Becausav? is independent of (by the fully
developed assumptiordP/ox is equal todRy/dx. These two gradients have to be
independent ok to avoid streamwise acceleration of the flow. Integratingadign
3.24 fromz = -9, it yields:
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1 U __
0=2+3+ g T uw|, (3.27)

wheret,, is the wall shear stress definedtwas= pu;?.

The overall force balance for the mean flow shows that the mpesssure gra-
dient is balanced by the mean shear stress on the walls (sge 8¢). Taking a
differential volume of fluidAV = AxL, 25 the force balance can be written as:

Figure 3.2: Global force balance in a channel

H x+Ax
o)

Tw, l’[w2

z ?HX

And dividing byAV and taking the limit one obtains:

lim P‘x_ P|x+Ax _ T_W

Ax—0 AX 20 (3.29)

Finally, taking into account thaty = Ty, + Tw, = 2pU2 and adimensionalizing,
the resulting global balance, can be written as,
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—pu2dP* puy?

5 A~ 5 (3.30)
dP*  dRy
o ~ax -t (3:31)

The non-dimensionalization of the transport equation$ whe bulk velocity
Uy in the channel configuration would leave two dimensionlemsumeters: the
Reynolds numbeRe and a mean pressure gradidifiy dx wherep'is the pressure
adimensionalized with the bulk velocity. The use of thetfois velocity u; as a
velocity scale allows to reduce the number of parametersa¢o Re. In this case
the mean pressure gradiet®* /dx" is equal to minus one.

The relation between the Reynolds number based on bulk i%eld®e and
Reynolds number based on friction velocRg, is:

Re — U%é (3.32)
Re — ”L—a (3.33)
Re U, 1 1 (b b
Re_Ub_ 1 /[ jras — / / U*dzd 3.34
Re U A Ja LyLzJo Jo y (3:34)

The periodicity of the pressure field at the streamwise batiad of the domain
allows the decomposition of the pressure into a periodi¢rdmution and a linearly
varying term along the streamwise direction. The lineadsgying term is the mean
pressure gradierdR)/dx and the periodic term includes only the fluctuatipn
Using this decomposition, the pressure is now expressed as:

XD = L) + 50X (3.35)
Where%—z’ = —1. The pressure term in the momentum equation 1.8 can be
written as:
op_ op
—&——WJré.l (3.36)
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The mean shear stress over a wall can be calculated as:

ouU

T (3.37)

Tw =
wall

The time-averaging procedure applied to the Navier-Stekgmtions can also
be applied to the other transport equations. To averagenér)e and the mass
transport equations, 1.20 and 1.21 respectively, it is seng to define the tem-
perature and the concentration as the sum of a mean and aaflagtterm as it
was done before, sb =T + T’ andCy = Cy +CJ. The averaged energy transport
equation follows:

iJr oT 1 T 0Ty,
ot = 'ox; ReProx;ox;  0x;

(3.38)

In an analogous way, the averaged mass transport equatidghefachemical
speciea (without chemical reactions) follows:

0Ca [, Ca_ 1 0%Ca Gy
ot ' lax; RaScax;dx;  0x

(3.39)

Analogous to thdReynolds stresseéf’u’j andC{]u’j are the turbulent fluxes of
heat and mass.

In what follows, the momentum and energy balances of theageermomentum
and heat transport equations for the cases stated in tdbdgepresented.

3.3.1 Case A: Temperature line source in a channel &e = 180

For case A (see figure 2.1), only the wall-normal directioneigvant for the
mean flow, so the integration of the time averaged momentuwratemn can be ex-

pressed as:
1 ouU —
0=z+0+—— —| — Tw — UW| (3.40)
~~ Re 0z 7 N« Z
1 —— 3 4
2

wherety, is the shear stress on a wall of the channel and it can be weat€in
nondimensional form):
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1 oU

= ke % (3.41)

Tw
wall

The numeration that appears at the bottom of the equatiosed in the next
chapters to identify the different terms of the balances.

Equation 3.40 indicates that locally the mean pressure@mad balanced by
the friction at the walls and by the Reynolds shear stnasgs

For the heat transport equation, the streamwise directiontthomogeneous as
shown in figure 2.1 and the time averaged thermal energy iequedn be written
as:

0=

oT 1 9°T 1 0°T 0
—U—— NG AN & YV
Uox " RaProe TReproz ax W) (TW) (342
2 3

3.3.2 Case B: Mixed convection aRe = 150and Gr = 9.6- 10°

In this case the momentum and energy transport equatiort®apted through
the buoyancy term. Both streamwise and spanwise direcimbBomogeneous as
it can be deduced from figure 2.1 and the integration of thevesit terms of the
time averaged momentum equation alongzki@ection can be expressed as:

1 du —— Gr %z _
0=z+0+——| — —UW| +— T —Tes)d 3.43
23t rg dz| " Jw U ‘Z+8Re$ 75( ref) dZ (3.43)
1 H,—/ 3 4 ~ ~~ -
2 5

Similarly, the integration of the thermal energy equatieads to:

B 1 dT
~ RePr dz|, RePr dz

1 2

1 dT

~Tw|, (3.44)
,é Y

3.3.3 Case C: Buoyant source line in a channel &g = 180and
Gr =10’

In case C, the buoyancy acts in the wall-normal directionarig the spanwise
direction remains as homogeneous. This implies that thamymfield in this case
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is not fully developed. The time averagedmomentumz-momentum and thermal
energy equations can be written, respectively, as:

oUU owu P 10U 10U 4

- R T B £ | [ § A ’—W'
0 ox 0z + 6X+Raax2+Ra 072 6x(uu) az(” )
\\1,-/ Y T 4 5 6 7
(3.45)
oUW _oww P iaZ\NJriazw_
- 0X 0z 0z Re 02 Reg 02
1 2 3 4 5
0 — 0 (—> Gr
— (Wu) - a_z<W>+8Re$ (T—Ter) (3.46)
T ‘7_/ ~ )
8

oUT oWT 1 0°T 1 0°T 0 —
= ——(TU) —=— (T'W 3.47
16)4 * 0z ReaPr 0x2 +qur 072 ax( ) az( ) ( )

33



UNIVERSITAT ROVIRA I VIRGILI

DIRECT NUMERICAL SIMULATION OF TURBULENT DISPERSION OF BUOYANT PLUMES IN A PRESSURE-DRIVEN CHANNEL FLOW.
Alexandre Fabregat Tomas

ISBN: 978-84-690-7781-8 / DL: T.1236-2007

34



UNIVERSITAT ROVIRA I VIRGILI
DIRECT NUMERICAL SIMULATION OF TURBULENT DISPERSION OF BUOYANT PLUMES IN A PRESSURE-DRIVEN CHANNEL FLOW.
Alexandre Fabregat Tomas

ISBN:

978-84-690-7781-8 / DL: T.1236-2007

Chapter 4
Parallel approach

The 3DINAMICS code was developed at the Mechanical Engingddepart-
ment by the ECOMMFIT research group [1]. The code, writteRantran 90, was
initially used to simulate forced and natural convectiorcubical cavities. This
code evolved to deal with more complex geometries and caafiguns. Currently,
it is used in the Direct Numerical Simulation (DNS) of tureaot channel flows.
The DNS demands high requirements in terms of memory and Gfetd even for
relatively small Reynolds numbers. In order to solve adelyaall the scales of
the flow it is necessary to use very fine grids, specially neld boundaries where
gradients and stresses are large. Parallel computers @loeal with such large
problems by splitting the computational work between ssveodesor processes
working in parallel. CFD is one of the fields in which the p&ktation techniques
have experienced major developments in recent years. Tdris started with an
initial parallel version of the 3DINAMICS code. This versiavas modified to im-
prove its memory efficiency and a parallel multigrid solver fhassive systems of
linear equations was implemented.

There are several ways to classify the parallel computértheve are two cru-
cial categories depending on how memory is used from a sefPafsC one can
find shared memory and distributed memory computers. Inaitmedr case, all pro-
cesses share a large common memory containing all the daay Brocess can
access this memory but only one can access the same datasanhtbg¢ime. On the
other hand, in distributed memory computers, each proasgsiown independent
memory containing only a part of the data. This memory canbeoaccessed di-
rectly by any other process. If a process requires data fromthar one, it needs
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to communicate to allow the transfer (a message) of thigmmédion. Information
transfer from one process to another is cattfeessage passing

There is a lot of literature discussing about the advantagelsdrawbacks of
both computer paradigms. Shared memory computers faeibiia easy program-
ming without any need for communication. However, theirlaoiity is limited
and it is difficult to increase the number of processes axgsti a shared-memory
machine. When the number of processes grows, data flow befweeesses and
the unique memory, become a bottleneck. On the other hasidibdited memory
machines allow to scale the computer by adding more prosesssly. The price
lie in the fact that programming become more complex andteddue to the need
of communication. This is the case of the popular low-cossters. Figure 4.1
contains simple sketches of these two architectures.

Figure 4.1: Distributed and shared memory

| MEMORY| | MEMORY| | MEMORY| | MEMORY| | MEMORY |
CPU| | CPu|| cPul| cPyi i|cCPU||CPU|| CPU|| CPU
COMMUNICATOR COMMUNICATOR
DISTRIBUTED MEMORY MODEL SHARED MEMORY MODEL

Nowadays, low cost and technological advances allow usdrsitd relatively
cheap clusters of computers mixing different type of aetdtiires. This is the case
of the cluster of the ECOMMFIT research group nanf@DMAwhich integrates
24 nodes AMD Opteron used for the numerical simulationsepresl in this study.

To develop the parallel version of the 3DINAMICS code, thelMMessage
Passing Interface) was chosen, specifically, the open edRI-CH library. The
algorithm used to solve the transport equations describesgtion 3 was paral-
lelized by sharing the work load between the processesonmanunicator

In the domain decomposition approach the work sharing etvpeocesses is
achieved by splitting a computational domain into sub-diosa Different sub-
domains are then distributed over different nodes that waorks portion of data.
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The processes or nodes that form a group inside which a comatiom occurs
are called acommunicator Usually this parallel work can not be done in an au-
tonomous way for every node because processes need datatinemprocesses
during calculations. So the nodes need to communicateglthigwwork progress.

In figure 4.2 it is shown a sketch that illustrates a domairodgmsition for
a 2D computational grid. This can be a typical CFD case usiedihite volume
approach. Suppose that this domain is split into two subadoemsharing an in-
terface. Each node must be updated using data from the ooosghodes in the
discretization stencil. Nodes close to the interface wakd data stored in the nodes
in the adjacent process. It is necessary to communicate grottessors through
the interface to exchange their data and, consequentlgtien buffer zone where
transfered data is stored. The size of this zone, usuallgdthélo, depends on the
discretization stencil. The case shown in figure 4.2 has bndfavidth 1 because it
takes only one row in each sub-domain. Higher order distattin schemes make
necessary to take larger halo regions in order to commuenalathe values of the
nodes of the halo.

Figure 4.2: Communication between processes

Proc #1

Halo
Region

Proc #2

The computational domain considered in this study is CatesThe decom-
position of the domain to assign equal work loads to eachga®cs simply direct
(small differences in the number of grid nodes in each subaio has no significant
effect on the parallel efficiency). There are several waydetmmpose the domain.
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A one-dimensional decomposition was used to minimize thraber of interfaces
between processes although this approach requires thd lasger buffers during

communications because of the larger interface. Theisygitlirection was chosen
to avoid communications along the homogeneous directibtigediow.

To evaluate the parallel efficiency, the concepspéed-umeeds to be intro-
duced. This quantity is used to determine how scalable a isodenespeed-ups
defined as:

1&
tp,

S= (4.1)

wheretp, is the computational time required by one process to perfomork
load andtp, is the computational time required Imyprocesses working in parallel
to complete the same task.

A linear speed-upepresents the ideal behavior for a parallel code. It would
mean that the use oinZorocesses to complete a task is half the time necessary to
complete it usingh processes. Taking into account that any communication, as a
task, takes some time to complete, theoretically a lispaed-ups only possible if
that task does not require communications to complete, sk @an be completely
parallelized and a process does not need any data from otieagses.
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Chapter 5
Multigrid techniques

The coupling between the pressure and the velocity fieldeenntiomentum
transport equations is solved in this study by using a natép procedure as it was
presented in section 3.2. The key step of this procedurdviesdhe solution of a
Poisson-type equation (3.15). This type of equations carelweatten in a matrix
form as:

AD = f (5.1)

whereA is the matrix coefficients andl is the source term (as it was shown in
section 3, this term is proportional to the divergence ofititermediate velocity,
ur).

In the previous versions of the code 3DINAMICS, a Conjugatadint method
was used to solve equation 5.1. This step took up te- 50% of the total com-
putational time for Adams-Bashforth scheme and-38% for Crank-Nicholson
scheme. In both cases it was the most time consuming stage afgorithm. The
reduction of the CPU costs in this bottle-neck step has amitapt impact on the
reduction of the total CPU time. In order to improve the cotagional efficiency
of the code, a multigrid solver was implemented to subtitiné conjugate gradient
procedure. Multigrid methods have become very populariensific and engineer-
ing fields as a powerful solver for different type of massiystems of equations,
specially for linear systems as those resulting from therdigzation of partial dif-
ferential equations using the finite-volume approach [33—@n addition it has
been shown that multigrid techniques are less sensitiviee@tid stretching [62]
than other methods.
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In order to introduce the multigrid methods, it is necesdargxplain some
definitions and concepts. The algebraic error and the rakmfuan approximate
solution,d’, to equation 5.1 can be defined as:

e=0— (5.2)

r=f—Ad (5.3)

Obviously, the error is as inaccessible as the solution.résiglual is a measure
of the amount by which the approximation fails to satisfydhiginal problemA® =
f. Itis also a vector and due to the uniqueness of the solutisnQ only if e=0.
However, it may not be true that whens small in norme is also small in norm.
Remembering the definition of ande and A® = f, it is possible to derive an
important relationship:

Ae=r (5.4)

Equation 5.4 indicates that the error satisfies the samef ®gfuations as the
unknown® when f is replaced by the residual This residual equatiomplays a
vital role in the multigrid approach. To improve any approation of the solution
@', the residual equation can be solvedd@and then compute a new approximation
using the definition of the error:

P=0 te (5.5)

A large number of numerical methods to solve equation (5ah)lme found in
the literature. The classical relaxation methods (Gawsdef SOR, etc) exhibit an
important degradation in terms of convergence rates aftewaterations. This is
due to the fact that these methods deal correctly with thefnégjuency components
of the error vector but they experience difficulties to daimp lbow-frequency error
components. Multigrid techniques overcome this drawbacfrbjecting the error
vector over coarser grids to convert the low frequency camepts to high frequency
components in the coarse grids.

Thus, Multigrid techniques are based on two concepts:

e Nested iteration Smoothers or relaxation solvers need an initial solutmn t
start the iteration. In the nested iteration concept, thitkal solution comes
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from a previous relaxation over a coarser grid for the samblpm. At the
same time this initial solution has been obtained from aiptes/relaxation
on a even coarser grid.

e Correction schemeSmoother or relaxation methods show a good conver-
gence rate only for the first iterations. After that, thirdegradates as the
iterative process advances. This is due to the fact thatythesof smoothers
deals correctly with the high frequency errors. This low &tage errors are
damped during first iterations. Low frequency errors areenthifficult to re-
duce and the convergence rate diminishes. To correct li@srror vector is
projected over a coarser grids transforming the low frequeror compo-
nents in higher ones. After that, this low-level error sminican be projected
back to the finer grid to obtain the final solution.

Sub-grid levels for multigrid can be generated in differeatys depending on
requirements. One can generate sub-grid levels from $ctaking into account
that lower levels grids use to have half of nodes that the fineceding grid [63].
On the other hand, it can be convenient to generate sub-eymals| taking the pre-
ceding grid as a reference. In 3DINAMICS, sub-grid levelgehlaeen generated by
imposing a grid number of poin®& for level N asPy = 2N + 2. If the number of
processes is an exact divisor of the number of grid pointsdimextion, this means
that it is possible to build a grid hierarchy as that presgmeigure 5.1. With this
approach it is possible to avoid communication during thergrid transfer steps
(interpolation and projection) and only in the smoothingpst it is necessary to
transfer information from neighbor processes. The drawlmdchis subgrid gen-
eration approach is that it is not possible to choose anyteatyr number of grid
points for the original grid. It should be in the form of 2-2 and the number of
processes should be an exact divisor of this number.

The iterative procedure is shown in figure 5.2. This case tiseg grid levels
where the top one (taggeds= 3) represents the original finer grid. Level 1 repre-
sents the coarsest grid and level 2 is an intermediate gsauton. The algorithm
starts by projecting the original problem stated in equetid in the coarsest grid
and solving it. Once this is done, the solution is projectethe upper level and
relaxed. The residual is projected again to the coarsesitden it is solved again in
terms of the residual equation 5.4. The solution is progeatgain to the upper level,
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Figure 5.1: One-dimensional multigrid hierarchy
n=4742<15 seeeeeecececcccces
3042710 o o o o ® o o o o o

n=2; 2'+2=6 o . . 6 . °

Proc#1  Proc#2  Proc #3 Proc #4

relaxed and projected finally to the finer grid level. The edsteration provides
an initial solution by relaxing the original problem on csar levels where it has
been projected. From here on, the solution is iterativelyrowed by relaxing over
different levels of grids taking advantage of the corratsgcheme idea. There are
different ways for visiting the grids. In figure 5.2, thecycleis illustrated. This
name refers to the shape of the grid sequence path. Other @oraption is the

W-cycle
Figure 5.2: Full Multigrid with V-cycle for three levels
relax A3@3= P3=P+e?
res’= A3Q3-f3 relax A3@3=f
N=3 (top level, original finest grid) //
T
s,/
/
/
relax A2P*=f2 / relax A%e*=res?
res?= A2P2-f2 /] res’= A%e’-res?

P2= P2e?
relax A2P2=f2

e2=elte*?
relax A2e?=res?

N=1 (coarsest grid)

solve A'P'=f! solve A'e'=res! solve Al'e'=res!
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In multigrid techniques it is necessary to take some detssiti is necessary to
choose thesmootherthe type of cycle (V, W, or even others), the number of grids,
the number of relaxation sweeps to do in each grichfdv-, for the downward and
upward directions in the V-cycle respectively) and the $fan operatorstﬁh and
'9h (interpolation from fine-to-coarse and projection from rseato-fine operators
respectively).

Multigrid efficiency has been compared with that of the Cgajie gradient
solvers for the Poisson equation. The set of conjugate gmadiolvers checked
includes the standard one (henceforth CG) and the Bi-Cabgugtabilized ver-
sion (Bi-CGSTAB) [64]. These solvers are conceptually véifferent from the
smootherss Gauss-Seidel or SOR. The last, finds the solution by gpiteratively
the jth equation of the set indicated in equation 5.1 forjtheunknown using the
current approximation for the neighbor unknowns. This iggample oftationary
linear iteration On the other hand, the conjugate gradient methods trandfoe
problem stated in equation 5.1 into a minimization problehere the minimum
value of the target function (derived from the quadratierfaf the original prob-
lem) is equal to the solution of the linear system of equatiofihe basic idea in
which CG is based deals with the finding of the steepest direat the minimiza-
tion function and to advance iteratively until the solutismeached. The key point
is how to find such search direction and how large are the sbtegudvance towards
the solution. The set of search directions are chosen ta-t¢hogonal (wheré\
refers to the coefficient matrix) @monjugateand can be generated byCanjugate
Gram-Schmidt process

The CG method may not be suitable for non-symmetric systeznause the
residual vectors cannot be made orthogonal with short recaes. The biconju-
gate gradient method (Bi-CG) uses another approach. laceplthe orthogonal
sequence of residuals by two mutually orthogonal sequerfees theoretical re-
sults are known about the convergence of the Bi-CG methodsyametric pos-
itive definite systems, the method delivers the same reaslteke CG method, but
with twice the cost per iteration. For non-symmetric masicit has been shown
that in phases of the process where there is significant tieducf the norm of
the residual, the method is more or less comparable to thgduakeralized mini-
mal residual method (GMRES) in terms of numbers of iteratii@5]. However, in
practice, it has been observed that the convergence bemaajobe quite irregular,
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and the method may even break down. Finally, the biconjugaeient stabilized
method (Bi-CGSTAB) appears as a suitable method to solvesgommetric prob-
lems avoiding the irregular convergence patterns of otli@vérsions.

The convergence criteria for the comparison of the differaethods can be
written as,

7”Aﬁ{f_” il <1073 (5.6)

The test has been performed considering two synthetic caskthe turbulent
fully developed plane channel flow. The two synthetic casgsespond to a case
with Dirichlet (fixed value) boundary conditions and anatbase with Neumann
(null derivative) boundary conditions. In the synthetices the source termis
have been chosen in order to obtain analytical solutiongbforThose solutions
have been obtained because of the simplicity and smootlofi#ss sources terms.
On the other hand, the source term in a simulation of a tunbdiew resulting from
the divergence of the intermediate velocity veatbrs more complex.

The availability of analytic solutions for the syntheticsea allows to check the
numerical results. Both synthetic cases have been solvédhitesian uniform and
non-uniform grids. The node locations for non-uniform gtiielsynthetic cases have
been generated using a geometric progression which isatleotby a geometric
parameter. The larger the parameter, the larger degree of stretchingrid is
obtained. Excessive stretching may lead to numeric ingiabiand convergence
problems so values< 1.2 are recommended.

This geometric parameteris defined as:

[ — Xi+1— X
X —x —1

The grid resolution for these synthetic cases is $3(B0x 130 (almost 2.2

million grid points). Note that a much smaller grid resabuis lead to small work

=23 ..ni—1 (5.7)

load/communication ratios. The fraction of the computadidime devoted to com-
munication between processes may represent a large fragftithe total time or
even the most important part. Parallel computing only hasesevhen work loads
are large enough to take advantage of the parallel work wety@ lagging in com-
munication.

Much larger grid resolutions would not be in the resolutiange of the CFD
problems currently solved and it would require prohibittBU and memory re-
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guirements.

For the fully developed channel flow it has been considerdy the compu-
tational times used to solve the Poisson equation in the G¥2 so it does not
correspond to a complete time step but only to the pressureatmn part. The
grid resolution in this case is 258130x 130 and the source term is generated
with the divergence of the intermediate velocity as showegunation 3.15. For this
case, the solution of the linear system corresponds to #espre correction field
as explained in chapter 3.

e Synthetic case: Dirichlet boundary conditions

In the case of Dirichlet boundary conditions the constants®term for the
domainQ[0, 1] is:

20  92d 920

5 otz — Q-1 (5.8)

whereQ is the source term. All boundary values are set to zero.

With these boundary conditions, the corresponding arwalysiolution is:

. NTIX . M1y . pTz
Sin sin sin 59
nmp Lx Ly Lz ( )

||M8

P(X,Y,2) Z Z
n=1m=1
whereLy, Ly andL; are the dimensions of the domain and the témp is

defined as:

bnmp =
-1 fo"z OLV OLXQser(nnx/LX)sin(mny/Ly)sin(pnz/Lz)dxdydz
}‘nmpfOLZ foLy o ser?(nTix/Ly)sin?(mrty/Ly)sin?(piz/L,)dx dy dz

nT mm\ 2 pm\ 2
- (L) +(L—y) +(L_Z) (5.11)

Finally the solution can be written as,

(5.10)

where
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[ee]

oxy2=3y 3y

n=1m=1p=1

8 (1—cognm))(1—cosmm))(1—cogpm))
A nmpe
X My . PTIZ

sin sin
Ly Ly L,

(5.12)

e Synthetic case: Neumann boundary conditions

For the Neumann boundary conditions case, the source terthdalomain
Q[—3, 3] was chosen as:

¥¢+¥¢+¥¢
ox2  0y2  0z2

= 24x+ 24y + 24z (5.13)

The corresponding analytical solution w@Eﬂ =0atx = >, 3 is:

D(x,Y,2) =40C+ Y +2) — 3(x+y+2) (5.14)

It is important to note that when all boundary conditions ldezimann-type
the problem may be not well-posed [66]. If the problem haslatiem, this
is not unique because the system involves only derivatif/@s df a solution
exist, then the source terinmust satisfy:

/Vf(x,y,z)dV:O (5.15)

This compatibility conditionis necessary for a solution to exist [66]. This
condition has been introduced in the multigrid approachlitaio a well-
posed problem. This means that the tefr(r,y, z) must fit the compatibility
condition expressed in equation 5.15 in its discrete formafgrid h:

NI,NJNK
Ek fn(Xi, Y}, z)dxdy;dz = 0 (5.16)
i7]7

In each grid the terni,, can be substituted bﬁz:
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_ NI,NJNK
fh=fn— Zk fn(X, Y}, z)dxdyjdz =0 (5.17)
i7j7
On the other hand, an integration constant must be set irr twdeund a
unique solution. To save computational CPU time this praoeds only ap-
plied in the coarsest levels [66]:

NI,NJNK
Zk ®n(Xi,Yj, z)dxdy;dz =0 (5.18)
i],

The results comparing the different solvers tested incihéespeed-upvalue
and the CPU time in seconds.

Results in terms o$peed-upare shown in figure 5.3 for equation 5.8 (a and b)
and equation 5.13 (c and d) with an uniform grid (b and d) artt @inon-uniform
grid (a and c).

The linearspeed-ughas been introduced in figure 5.3 for comparison. This lin-
ear profile indicates the ideal situation where there is 188 laf efficiency due to
communication and the work load is perfectly shared betvikerprocesses. The
communications between processes and, to a lesser ekiengtiwork latency and
the imbalanced work load between processes are respofsildeviations from
this ideal approach.

It is important to note that there is a basic difference betwthe algorithms for
the standard CG and the Bi-CGSTAB methods. The second ocermgitionates
the function matrix and this represents an additional matector product which
implies additional operations per iteration and, consatjyeadditional communi-
cations. In other words, Bi-CGSTAB usually solves the sanoblem as CG with
more CPU operations (and consequently communicationghbutumber of itera-
tions can be smaller depending on the problem.

Results are presented in figure 5.4 in terms of CPU time (iorses).

Using 8 processes to solve any of the synthetic cases, the véspeed-ugdor
multigrid is between 2 and 3 while it is between 4 and 6 for thejegate gradient
methods (see figure 5.4). For uniform grids the CG requiredlenCPU times than
the Bi-CGSTAB but in terms o$peed-ughe last one is better (see figures 5.3b,d
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Figure 5.3: Speed-up for different Poisson solvers

(a) Dirichlet, 130°, r=1.01 (b) Dirichlet, 130°, uniform
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and 5.4b,d). In fact, apeed-upralue of 6 for the Dirichlet case with uniform grid
is the highest obtained in this analysis. This situationpgasite for the synthetic
cases using non-uniform grids. The Bi-CGSTAB, more sugdtt non-symmetric
matrices, is betweenl and 17 times faster than the CG but gpeed-ups not as
good as that found for the CG (see figures 5.3a,c and 5.4a,c).

Scalability differences between the CG and the Bi-CGSTA®B sanall for the
Neumann boundary conditions problems for uniform and neifeum grids. For
Dirichlet boundary conditions this differences are mogngicant. Note that CPU
time scale in figure 5.4 is logarithmic, so results for these methods have to be
read carefully because differences may seem smaller.

For the channel flow case, the grid resolution correspontigtaised in cases A
and C (258« 130x 130) so the comparison gives realistic and practical inédrom
about the computational costs of these simulations. It gomant to note that this
grid resolution is the double than that used in the syntlases. Another important
difference between the channel flow case and the synthetgsdees in the nature
of the source term in equation 5.1. For the synthetic casesadhrce term is a
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Figure 5.4: CPU time (seconds) comparison for differens&an solvers

(a) Dirichlet, 130°, r=1.01 (b) Dirichlet, 130°, uniform
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smooth function with very large scales while in the chanmskcit comes from the
divergence of a turbulent velocity field with large range @dlss. This is the reason
because the computational CPU times are larger than in thibetyc cases (see
figures 5.4 and 5.5b). For instance, for the synthetic cageMeumann boundary
conditions and a non-uniform (which is the most similar te finessure calculation
in term of boundary conditions type and grid stretchingg, @PU time required by
Bi-CGSTAB was about 16 CPU seconds using 8 processes and Z&ifp For the
pressure calculation in the fully developed channel flow, @PU times for these
methods were approximately 25 and 129 seconds respectivetymultigrid, the
synthetic case took.® seconds of CPU time and the pressure calculation used 7
seconds approximately. In termsggdeed-upthe results are quite similar to those
obtained for the synthetic cases. The CG has the best s¢atitays and multigrid
is the fastest solver although it shows again the smalledingcfactors.

For all the cases studied, both conjugate gradient methmale snuch better
than multigrid. This is due to the fact that the number of c&lir communica-
tion tasks is much larger in the multigrid algorithm than lve tonjugate gradient
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solvers. The multigrid solver core issmoothel(SOR in this case [67]) so it needs
to perform a sweep to update solution and it is required torcamcate the data
located in the halo regions. At the beggining of the nest@iion procedure, the
problem has to be solved accurately at the coarsest grithoddth the number of
grid points at this level is small, it still requires a largenmber of sweeps to meet
the convergence criteria. The number of sweeps requiréxd aigxt solver stages in
the coarsest grid are continously smaller because thei@olistprogressively im-
proved. The number of sweeps in the relaxing steps is veryl fiygically v1 +v2

is less than 10) but the grid resolutions are finer and cormsgtyuthe communi-
cation buffers are larger. However, the CPU times for mtlligre smaller than
those corresponding to conjugate gradient solvers as shomparing figures 5.4
and 5.5b. Factors around 10 are common and larger factopoasgble especially
for Dirichlet cases. This means that solving a Poisson émuatith multigrid is
much more efficient than using conjugate gradient methodsrins of CPU time
for a given communicator.

Figure 5.5: Comparison of different solvers for the presgguation in the channel
configuration
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Previous results for this comparison showeeed-uyalues of multigrid smaller
than one. For a certain number of processes, the CPU tim@&eddo perform a
task was larger than that required for a smaller number cfge®es. The reason
was that the communication time was extremely large. This sedved using the
hierarchy shown previously in figure 5.1 because this agbradlows to eliminate
communications in the intergrid operations. The grid tfansf a vector from a fine
to a coarse grid is clearly direct without any communicabenause all grid coarse
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nodes lie between fine grid nodes. However, in the inverseepiuare, all fine grid
nodes lie between coarse grid points except those in therbglon. To interpo-
late over this nodes one would require information from eglft nodes implying
communication. Such problem can be solved by assigninggd#to points in the
fine grid the injected value coming from the closest coarse mpdes. The error
associated with this approximation is corrected in thexatian stages.

Finally to summarize, multigrid solvers efficiency and retness depend mainly
on [68]:

e Number of grid levels and number of relaxation sweeps on kaeh

Interpolation operators used in inter-grid transfers

Type ofsmoothel(points, lines, planes, over-relaxation, etc)

Coarse grid generation strategy

Grid anisotropy and type of boundary conditions
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Chapter 6
Results and discussion

In this chapter, the numerical results for the different floanfigurations con-
sidered in this study are presented and discussed. Thetrahdof the code has
been performed by comparison with data avaliable in theslitee.

The turbulent flows considered in this study include:

e Base case: Fully developed channel floviRat = 150
e Case A: Scalar line source in a channeRat = 180
e Case B: Mixed convection &g = 150 andGr = 9.6- 1(°

e Case C: Buoyant source line in a channdRat= 180 andGr = 10’

6.1 Base case: Fully developed channel flow Rg =
150

The size of the computational domain iE¥x 21 x 2 along the stream-
wise, spanwise and normal to the walls directions, respalgtiThe streamwisex|
and spanwisey] directions are homogeneous so periodic boundary conditiave
been applied for the hydrodynamic variables (velocity aresgure). No-slip and
Neumann boundary conditions have been implemented on tisefaavelocity and
pressure respectively. The grid has a resolution of 2221 x 121 points and has
been stretched near walls using a logarithmic transfoong69]. The minimum
scalar finite volume size Az}, = 0.3 for the finite volumes located adjacent to
the wall, where superscript” indicates non-dimensional wall coordinates defined
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in equation 6.1. The non-dimensional time step for timegrdagon has been set to
At =103,

u *
X" =xy =X"Re (6.1)

Stretched grids allow to capture the smallest turbuleniescaear the wall by
using higher resolution inside the boundary layer whereligras and stresses are
larger. The flow has been initialized using previous regatttully-developed chan-
nels.

The Reynolds number based on the bulk velocity and the chamdéh is
Res = 4546 and the friction factor (defined in equation 6.2Fjs= 0.0088. These
results are in agreement with DNS of Iwamoto [70] who repbRe= 4560 and
Cs = 0.0087 at the same Reynolds number.

w2 0U”
3pUZ  ReUg? oz |,

Cs (6.2)

Figure 6.1 shows the mean streamwise velocity profile antbibtemean-square
(r.m.s.) for the three velocity components. These restdts@mpared with previous
DNS [70] showing good agreement as can be seen in figure Ghollld be noted
that lwamoto [70] performed the simulations with a speattale with a resolution
of 128 modes along the homogeneous directions of the flow gnidi @f 97 along
the normal to the wall direction with a domain size afdbx 21 x 25. This can
explain the slight differences observed in figure 6.1b.

6.2 Case A: Scalar line source in a channel @eg =
180

This case is similar to the previous one with periodic boupdanditions for
hydrodynamic variables along the homogeneous directiodsna-slip boundary
conditions on the walls. HoweveRe is now 180 so the grid resolution has been
increased. The scalar transport can be modeled using tirgyeaequation 1.20
where temperatur€ stands for a passive scalar so the buoyancy effect is nedlect
At the inlet of the computational domain the source line iplemented as a span-
wise band centered in the vertical direction injecting tbela on the horizontal
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Figure 6.1: Mean (a) and (b) r.m.s. profiles for pressureetirchannel aRe = 150
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midplane of the channel.

The size of the domain ist® x 21 x 26 with a grid resolution of 258 130
x 130 (4360.000 points approximately). The Prandtl number is set.@d 0The
time step for integration has been sefte= 5-104. The statistical quantities have
been obtained after averaging for a time period df 60

Interpolated results from an instantaneous flow fieR&t= 150 case have been
used as initial conditions.

Figure 6.2 shows a slice at= 12 with the instantaneous velocity field over the
corresponding pressure field for the channel floRat= 180.

An instantaneous temperature field slicg at0 is shown in figure 6.3. It can be
seen how the temperature is dispersed in the channel folrrmiog-buoyant plume.
Close to the source, it can be observed clearly the meangdefithe plume. At this
stage the width grows as in an homogeneous flow. At lapesitions, it is possible
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Figure 6.2: Instantaneous velocity and pressure fiel&gat 180

to see the effect of turbulent mixing forming complex stures and the effect of

the inhomogeneity induced by the walls on the plume disperstolor range is not
linear to highlight details.

Figure 6.3: Instantaneous temperature field from a linecsoatRe = 180

Figure 6.4 shows the mean velocity profile compared with DN& fully de-
veloped channel flow @& = 180 reported by lwamoto [70]. This author used a
grid resolution of 128 128x 128 with a domain size of 180 x 6.4d x 2d. Slight
differences that can be observed in figure 6.4 can be explaine to the fact that

Iwamoto [70] use spectral methods to solve the momentumtieqsan the homo-
geneous directions.

Figure 6.5 shows the comparison between the present poedicif the plume
half-width and mean centerline scalar decay and DNS peddrby Brethouwer
and Nieuwstadt [38] and Vrieling and Nieuwstadt [32].
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Figure 6.4: Mean (a) and r.m.s. (b) velocity profiles
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Brethouwer and Nieuwstadt [38] simulated the flow field in Byfdeveloped
channel flow with a vertically centered line sourcdra = 180 andSc= 0.7 with
a grid resolution of 22% 120x 78 in a computational domain with sizesald
60 x 20 in the streamwise, spanwise and wall-normal directionsee$vely. These
authors also considered the simulation of a scalar field @ithmical reaction with
a line source near the wall. In this case the computationakilo was expanded up
to 30 x 60 x 20 by periodic extension of the flow field.

Vrieling and Nieuwstadt [32] used a grid resolution of 2606 x 150 in a
computational domain with sizes & 60 x 20 in the streamwise, spanwise and
wall-normal directions respectively to simulate dispensand chemical reactions
for a vertically centered single source in a fully developkednnel aRe = 180 and
Sc=1.0. These authors used larger domain sizes and resolutiotiefsimulations
considering two source lines.

Itis important to note that Brethouwer and Nieuwstadt [38jsidered a smaller
size for the line sourceHs = 0.028)) than that used in this studyd§ = 0.0540).
This would explain the smaller half-width predicted by Br@iwer and Nieuwstadt
[38] for the formed plume in comparison with that of the presesults as shown in
figure 6.5b. However the evolution of the plume half-widthesgs with that reported
by Vrieling and Nieuwstadt [32] who considered a Gaussia@ $iource with width
0, = 0.04. Also the similar grid resolution used along the wall nafdirection of
the present simulation and of Vrieling and Nieuwstadt [3#] explain the different
trends ofo along the streamwise direction in figure 6.5b of these twaifations in
comparison with that of Brethouwer and Nieuwstadt [38].
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The mean centerline temperature decay rate for homogenhatudence is well
described by a power law of the forifi/To O (x/h)" according to Karnik and
Tavoularis [15]. The fit of the present results to this powaw,|gives a value
n = —0.6 which is the same than that reported by Lavertu and Mydyaj38].
This value is smaller than that obtained for homogeneousutence for which
n= —0.75 to —1.0 for distancesx/M > 1 whereM is the mesh length of the
turbulence-generating grid. These authors suggest tHatger values o the
exponenh should decrease to values of the order©f5 [9].

The present prediction of the rate of the decay of the meatedere tempera-
ture shown in figure 6.5a differs slightly from that of Vrigj and Nieuwstadt [32]
probably because these authors used a Gaussian profilesfeptiice in order to
avoid or minimize non-physical oscillations associatethva@rge scalar gradient
values near the source.

Figure 6.5: Mean centerline decay (a) and half-width plub)ddr temperature
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Figure 6.6 shows the comparison of the r.m.s. profiles witmerical results
of Brethouwer and Nieuwstadt [38] and experiments carrigidby Sawford and
Sullivan [71]. These authors measured the dispersion thggnerated turbulence.
The homogeneous turbulent flows (as those obtained usidgugbulence) show
double peaks in the r.m.s. profiles far downstream as shoviigune 6.6. The
non-homogeneity in wall-normal direction introduced iranhel flows does not
show this feature tending to exhibit a single peak in thes.rprofiles as the dis-
tance downstream increases [33]. On the other hand, therredsy Brethouwer
and Nieuwstadt [38] r.m.s. profiles do not show peaks canthiewted to the fact
that the size of their source is smaller@R8) than that considered in this study
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(0.0545).

Figure 6.6: Temperature r.m.s. profiles
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Figure 6.7 shows the mean profiles of the relevant terms ofitie averaged
x-momentum equation (3.40). The numbers in the label offthige indicate the
different terms of the equation 3.40. Note that the termeHhsen moved to the
right hand side of the equation 3.40 to plot their contribaiin figure 6.7. Without
the buoyancy effect, the pressure gradient is balancedittyofr on the walls as
it can be seen from integration of the mean momentum equatienthe channel
width. Figures 6.8 to 6.10 show the budget of the time avetdbermal energy
equation (3.42) at different three selectedositions. The mean temperature pro-
files scaled and shifted for clarity have also been inclugethése figures. It is
important to note that all the relevant terms of the balarggagons have been
written on the right hand side so the signs have changeddiogly (see equations
3.40 to 3.47).

The contribution of the different terms to the thermal egdygdget atx = 6.0
are shown in figure 6.8. This streamwise position corresptmthe zone where in-
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homogeneities from the walls are not important. The mamsaare the streamwise
convective transport and the wall-normal turbulent tramspith only a relatively
small contribution of the conductive term along the wallmal direction. This last
term decreases in magnitude as the distance from the ssurc@eéased along the
streamwise direction because the mean temperature graéiemreases as well.

Far from the wallls, the turbulent term in the wall-normakdiion,d (WT’) /dz,
is zero atz= +0.17 as shown in figure 6.8. The turbulent heat X’ has zero
value at the walls because there the velocity fluctuatioaszaro. As it can be
seen in figure 6.8, the gradientwfT’ along the wall-normal direction is negative
from the lower wall up toz= —0.17. This means that, starting from the lower
wall where its flux value is zeray’ T’ decreases continously reaching a minimum
atz= —0.17. Forz > —0.17 the gradient is positive so the turbulent flux grows
reaching a maximum a= 0.17. At the upper wall its value in again zero.

This is explained because in the lower half of the channelsitige fluctuation
of wimplies the entrainment of fresh cold fluid in the plume areldcbnsequent de-
crease in temperature. Inversely, in the upper half a pesitlocity fluctuation of
w produces an increase of the temperature. The streamwisedatme term is also
zero atz= +0.17. This corresponds to the positions where the mean temopera
gradient along the streamwise direction is zero.

The wall-normal diffusion term also vanishes at locatten4+0.17. This imply
that the second derivative for the mean temperature in ttieremal direction is
zero indicating the inflection point of the profile.

This behavior can also be observed at the other two streapeisitions con-
sidered,x = 125 andx = 24.0, and shown in figures 6.9 and 6.10 respectively.
However, as the plume disperses downstream, this poshitis sowards the walls.

It is located az = +0.26 andz = +0.4 for x = 12.5 andx = 24.0, respectively.

Figure 6.9 shows the profiles located at the middle of thesimse dimension
of the computational domain. At this position= 12.5, the plume reaches the
walls as can be deduced from the temperature profile as wtikegsrofiles of the
turbulent transport term. The distribution of the differéerms is similar to the
previous one profiles but profiles are wider in the wall-ndrdigection and their
intensity has decreased.

Figure 6.10 shows the profiles at a streamwise position wihergvalls affect
considerably the plume structure. The streamwise coroeetnd turbulent trans-
port terms are again the most important contributions talibemal energy budget.
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It is possible to observe two peaks near walls for the nornflaisive term in figure
6.10. This can be explained because near the walls, as itecabserved in fig-
ure 6.10, the molecular conduction is responsible for theasse of the turbulent
wall-normal transport and, consequently, the conductigagport becomes more
important in the overall balance. This peak of the diffusival-normal term is
greater in magnitude than the values found within the flowhefachannel.

Figure 6.7: Mean x-momentum transport balance
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Figure 6.8: Mean heat transport balance at x=6.0
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Figure 6.9: Mean heat transport balance at x=12.5
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Figure 6.10: Mean heat transport balance at x=24.0
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6.3 Case B: Mixed convection aRe = 150and Gr =
9.6-10°

This flow is also a fully developed turbulent channel flow wiitle gravity vec-
tor oppositely aligned with the streamwise direction in aigal channel. In this
case, the buoyancy term in equation 1.8 is not zero. Theamtertemperature cor-
responds to the average between the hot and the cold walls&eftXg x,y, —d,t) =
Tg = landT(xy,d,t) = T = 0 respectively. The buoyancy effect aids or opposes
to the mean pressure gradient depending on the locatiomwiité fluid. The molec-
ular Prandtl number is.@1 and the Grashof number@r = 9.6- 10°. The size of
the domain is 80 x 21 x 20 along the streamwise, spanwise and normal to the
walls directions respectively. The boundary conditionsvielocity and pressure
fluctuation are the same as in case A.

The grid resolution is 13k 101 x 101 with a minimum finite volume size
Azt = 0.3 near the walls of the channel. The time step for time intégnehas
been set tét = 1-10-3. The flow statistics have been averaged when the flow was
fully developed during a period of 200 non-dimensional tumés.

Figure 6.11:T. isosurface

Cold wall

Hot wall
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The hydrodynamic variables have been initialized usintamsneous fields of
case A. The temperature field is initialized as a constanpégature field aflq.
The initialization of temperature field with a linear meaofge between walls has
been observed to demand high computational resourcess liden found that for
mixed convection cases a very large domain is needed in ttiealestreamwise)
direction. If a smaller box is used no quasi-steady conudlitiare obtained, and
the bulk velocity varies with a very low frequency [43]. Thesam temperature
also fluctuates at a very low frequency. The computatiorglirements increase
with the Grashof number [72]. Among all benchmark casesidensd, this one
is the most costly in terms of CPU time since it took a long titmechieve the
fully developed flow conditions. As an example of the inséaeus temperature
field, figure 6.11 shows the isosurfaceTaf; and figure 6.12 shows instantaneous
temperature contours gt= 0. It can be seen in figure 6.12 the hot region in red
(buoyancy aided flow) and the cold in blue (buoyancy opposed)fl It also can
be seen in the central region of the channel the differeecethf buoyancy near
the two walls. Note that the color scale is not linear to ewgbkahe details of the
temperature distributions in the central region of the cighwhere the temperature
differences are small because of the turbulent mixing.

Figure 6.12: Instantaneous temperature field for mixedectn atRe = 150 and
Gr=96-10°
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Results for the mean and r.m.s. temperature profiles arershofigure 6.13
and the mean streamwise velocity and r.m.s. profiles arershofigure 6.14.

The results show a good agreement with those of avalialdeatiire [73] as
shown in figures 6.13 and 6.14. The mean temperature gradittite walls are the
same and thus the macroscopic heat balance is satisfied. r8avent mean quan-
tities are presented in table 6.1. The values in parentlvesesspond to DNS results
reported by Davidson et al. [73]. The largest differencdsvben these values are
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Figure 6.13: Mean (a) and r.m.s. (b) temperature profiles
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Table 6.1: Mixed convection relevant quantities
Tw-5 Tws Up To Uy — (0T /oz),, | Re

0.68(0.71)| 0.40(0.42)] 9.08(9.8) | 0.41| 0.74(0.75)| 2.42(2.31) | 2725

smaller than 10% and are found in the bulk velocity@) and in the averaged heat
flux at the walls (48%). The Reynolds number based on the bulk velocity is defined
asRg, = Up20/v.

The time averaged profiles of the mixed convection case, asichean temper-
ature and velocity shown in 6.13a and 6.14a respectivetynan-symmetric with
respect to the channel center= 0. This implies that buoyancy is not zero at the
center of the channek& 0). As it can be seen in figures 6.12 and 6.1Bg; is
located closer to the hot wall. The velocity profiles are alen-symmetric so the
wall shear stresses at walls are different as indicatecie & 1.

The hot fluid region located at< —0.6, experiences a larger velocity associated
with a positive buoyancy force. Inversely, cold fluid moves\er due to negative
buoyancy. The velocity fluctuations are larger near the walldlas it can be seen in
figure 6.13 while the temperature fluctuations are larger theshot wall (see figure
6.13b).

To study the effect of numerical diffusion, simulations loé tmixed convection
case have been performed using the QUICK scheme [74] forifweetization of
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Figure 6.14: Mean (a) and r.m.s. (b) velocity profiles
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the advective terms. Results are shown in figures 6.15 ar&l &NLmerical dif-
fusion problems are specially important on r.m.s. profifegu(e 6.15b) because
unphysical additional diffusion produces the reductionhaf turbulent fluctuation
intensities.

Figure 6.17 shows the contribution of the different termshef time averaged
x-momentum budget (equation 3.43).

Figure 6.15: Mean (a) and r.m.s. (b) temperature profileainbtl with QUICK
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The friction at the walls is balanced by the sum of mean presgradient and
buoyancy. Whereas the nondimensional mean wall sheas s{fés 1 for the non-
buoyant case, this quantity for the mixed convection case®& be reformulated
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Figure 6.16: Mean (a) and r.m.s. (b) velocity profiles okadimith QUICK
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asty =05 (TW,5+TW75) = pu? # 1 because of the contribution of the buoyancy
term to the x-momentum equation. Furthermore, whereasowithuoyancy, the
turbulent shear stress is linear in the region where visefigets are negligible,

this is not valid when buoyancy is included. For comparisesults for the devel-
oped channel flow aReg = 150 without buoyancy are shown in figure 6.18. The
contributions of the time averaged momentum equationshisrfully developed
channel aRe = 150 and case A are the same so the numbers used to identify the
different terms in figure 6.18 correspond to those used o 3.40.

The symmetry with respect to the centerline of the channe! Q) for the dif-
ferent terms in the x-momentum equation for the mixed caimwecase has been
lost in comparison with a non-buoyant case. In order to compath cases, figure
6.18 shows the profiles for a pressure-driven fully devedogigannel at Reynolds
numberRe = 150. The wall-shear stress value has decreased becauseethe p
sure gradient is balanced not only by the friction on wallskiyuboth friction and
buoyancy. This is also reflected in the decreasing of the misaous stress term.
The mean streamwise velocity profile for case B is asymmetitocity increases
from the hot wall and it reaches its maximum valug at —0.65. The maximum
is reached at the centerline of the symmetric isothermé/ fidveloped channel.
Mean velocity decreases continuously frams —0.65 to the cold wall.

The turbulent flux produced byw is significantly reduced near the hot wall
(6.17) in comparison with the isothermal case (6.18). Itloaseen that the turbu-
lent flux vanishes at the position where the maximum of vé&jamtcurs.
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The mean buoyancy aids the flow close to the hot wall while eppat close
the cold wall.

Figure 6.17: Mean momentum transport balance for the migedexrtion case
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Figure 6.19 shows the contribution of the different termshaf mean temper-
ature equation (3.44). In this case only the turbulent heatdhd the convective
transport of heat have relevance. The first one becomes m@rtiant near the
centerline of the channel. Inversely, the convective termare important near the
walls where the temperature gradient along the wall-nodmattion is larger.
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Figure 6.18: Mean momentum transport balance for isothlefutiyg developed
channel flow aRe = 150
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Figure 6.19: Mean heat transport balance for the mixed atiorecase
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6.4 Case C: Buoyant source line in a channel g =
180and Gr = 10/

The physical model of this case is shown in figure 2.2. The gsed is the
same as that in case A: 258L30x 130. Similarly the minimum finite volume size
is Azt = 0.2 near the walls of the channel and the time step for time ratem
has been set tht = 5- 10~% with an averaging period of BJu; for the calculation
of the statistics.

This is the same grid resolution of the buffer zone attachetiainlet of the
main domain. The buffer zone is used to generate inlet iglacid pressure fields
for the computational domain of case C because the streardirisction is not
homogenous. Although this resolution may seem excessadow to optimize the
memory usage by assigning the same memory resources fodbothins. Note
that in the buffer zone, only continuity and momentum equretiare solved.

Case C differs from the case A because momentum and heatgrieddhrough
the buoyancy effect produced by the hot plume region in aszdddckground fluid.
The lower density of the plume region forces the flow to risé aslvances along
the channel. The hydrodynamic variables are no longer hemsgus along the
streamwise direction and, consequently, the periodic Banconditions are not
suitable. To solve this, the buffer region shown in figure I2a8 been attached at
the inlet of the main domain. In this buffer domain, momentequations for a
developed pressure-driven channel flow are integratedtaidtlet velocity field is
used as the inlet boundary condition for the main domain @/kie buoyant plume
develops.

As an example of the instantaneous temperature field fig@BesB.ows contours
of temperature at different streamwise positions. The na@alr.m.s profiles for the
streamwise component of the velocity vectodhscaled and wall coordinates are
shown in figure 6.22 for three selected locations along tremstwise direction;
near the inlet ak = 6.0, in the middle of the channel lengthyat 12.5 and near
the outlet atx = 24.0. The mean velocity and r.m.s. profiles for the case A (non-
buoyant case) are included in figure 6.22 for comparisongsa®p. It is important
to note that when the buoyancy is considered, symmetrytisitasdifferent friction
velocities and wall-coordinate scales are obtained fotvloawalls.
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Table 6.2: Friction velocity and wall shear stress for case C

Wall | (ur) | (Tw)
Top |1.07]| 114
Bottom | 0.99 | 0.97

Table 6.2 shows the averaged friction velocities at the taplaottom walls. It
can be seen that the wall shear stress is larger at the toghaallat the bottom
wall because of the deflection of the plume towards the tojh Watan be seen in
figure 6.22a that the averaged velocity profileZer 0 scaled with the local friction
velocity at the bottom wall agrees with the isothermal viéjogrofile while near the
top wall (z > 0), where buoyancy considerably affects the flow, the prefiaibits
lower values of the mean velocity. Bascaled coordinates it can be seen in figure
6.22b how the mean velocity decreases in the center of thenehé&he maximum
value has drifted towards the top wall) while it increasearribe top wall.

Figure 6.20: Instantaneous temperature contours at eliffestreamwise positions

The mean wall-normal velocity component is shown in figui236. The w-
component has very small values compared with its r.m.sur@i®.23b). In the
mean field the flow is moving upwards very slowly and consetiyéime variation
of the u-component mean profile along the channel is alsol srHawever, it is
important to note how r.m.s. values for the u-component grear the upper wall as
the streamwise position is increased as shown in figure 6Fl@ctuation intensities
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of uandw are larger in the middle of the channgk 12.5) than close to the outlet
(x = 24.0). See for example figure 6.20. A similar tendency can bergbden the
meanw component. This can be explained considering that-atl2.5 the plume

is moving upwards to the top wall and its development is vatgnise (see figure
6.20). Close to the outlex& 24.0), the plume is attached to the upper wall and the
mean vertical velocityv is lower as it can be seen in figure 6.23a.

To clarify this point, the mean temperature field and thedlsglected positions
are shown in figure 6.21. The mean temperature field identifesser the different
stages of the buoyant plume along the channel. Close tolgtexa- 6.0, buoyancy
starts to deflect the plume towards the upper wall. At the feidtithe channel =
125, buoyancy effects moves the plume upwards but it is not ¢etely attached
to the wall. Finally, atx = 24.0, the plume reaches the top wall and approaches to
its developed regime.

Figure 6.21: Mean temperature field for case C
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The mean temperature profiles for the selected locationsteo@n on figure
6.24a. The typical Gaussian bell profile associated withntlean scalar concen-
tration (without wall effects) can be seen here for locatictose to the inlet but
displaced to the top wall due to the buoyancy effect.

The profiles of the temperature fluctuation intensities (gpee 6.24b) show
a similar tendency with to respect the centerline. Two peakspresent even for
advanced locations but symmetry with respectte O is not found. Compared
with case A, buoyancy affects the mean temperature profiteefigcting the plume
towards the upper wall while reduces the maximum interssitied increases its
width. In a similar way, the two peaks in the fluctuation irgiéy profiles are not
symmetrically distributed as they were in the case A. In {y@au zone of the plume
the r.m.s. values are of the same order of magnitude in caskil& they decrease
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in the lower region. Ak = 12.5 the behavior of the r.m.s. is similar bubat 24.0
the r.m.s. values are higher in the lower part of the plumés Gan be explained by
the damping effect of the wall on the turbulence intensity.

Figure 6.22: Mean (a) and r.m.s. (b) u-component profiles
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The figures 6.25 to 6.33 show the profiles of the different s2eohthe time
averaged x-momentum, z-momentum and heat transport eqaai45, 3.46 and
3.47 respectively. Figures 6.25, 6.26 and 6.27 show thestefrthe x-momentum
equation at the streamwise positions- 6.0, x = 12.5 andx = 24.0 respectively.
The number in the labels of these figures identifies the @iffeterms of equation
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Figure 6.23: Mean (a) and r.m.s. (b) w-component profiles
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Unlike cases A and B, the momentum and heat transport eqeaifcase C are
not homogeneous along the streamwise direction and thgratien along the wall-

normal direction is not possible. Consequently, profilesespond to the different
terms of equations 3.45 to 3.47.

Near the inlet, ak = 6.0 (figure 6.25), the pressure gradient is balanced mainly
by the streamwise convection and the wall-normal turbulemhs in the central
region of the flow. Near the walls, the wall-normal diffusioontributes to balance
the wall-normal turbulent transport and the pressure gradi

At x=125 (figure 6.26), the situation is similar to that correspogdox = 6.0.
However, the two main contributions, the wall-normal dsifon and the wall-normal
turbulent flux, increased in magnitude close to the top wallrthermore, in the
upper region both the contributions of the convective teimitie streamwise and
wall-normal directions are increased because of the pluefextion. As it was seen
for the mean velocity and r.m.s. profiles, at this positiaa plume development is
very intense. The mean streamwise velocity componentght}i larger close to
the top wall and the vertical mean velocity component exlaisimall positive value.

At x = 24.0 (figure 6.27), the plume has already reached the upper wdll a
the contribution of the convective terms decrease but tlaee Istill significative
values. The two main contributions (the wall-normal difrsand the wall-normal
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Figure 6.24: Mean (a) and r.m.s. (b) temperature profiles
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turbulent flux) profiles are similar to those foundkat 6.0 but their magnitude has
increased near the top wall and decreased slightly neaioti@n one.

Figures 6.28, 6.29 and 6.30 show the contribution of thegerhthe time aver-
aged z-momentum equation. The number in the labels of thpse§ identifies the
different terms of equation 3.46.

The main terms in the budget are the pressure gradient, th@eranal turbu-
lent flux and the buoyancy. The convective and diffusive geimthe normal and
streamwise directions are insignificant compared with tieeipus contributions. It
is important to remember that the mean positive value f relatively small.

It should be noted that the buoyancy term is proportionahéorhean tempera-
ture profile. The plume drifts towards the top wall as the f@siin the streamwise
direction is increased and the buoyancy term profile maxirmoves upwards ac-
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Figure 6.25: Mean x-momentum transport balance at x=6.0
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cording to this. Atx = 6.0 the plume deflection is not important and the buoyancy
term has a maximum close to the center of the charmelQ) while its value close

to the walls is insignificant. In the central region of the mhal the pressure gra-
dient is the main contribution balancing the buoyancy amasecto the walls, it
balances the wall-normal turbulent contribution. For tamas farther from the wall
the wall-normal turbulent profile in the center of the chdrivecome smoother in
comparison withk = 6.0. The maximum value for the buoyancy, according to the
mean temperature profile, has shifted upwards reaching élleatwk = 12.5. The
pressure gradient term is antisymmetric respect to thednoyyterm because the
wall-normal turbulent contribution is small compared wiitle other two in the cen-
tral region of the channel. Close to the sourcex at 24.0, the plume is already
attached to the top wall. The wall-normal turbulent termfiteas very smooth and

is significant only close to the walls. The buoyancy contiim proportional to the
mean temperature, is always zero near the bottom wall.

Figures 6.31 to 6.33 show the contribution of the differeartrts of the time
averaged heat equation.

The contributions of the mean terms to the heat equationtheanlet are sim-
ilar to those corresponding to the case A but deflected toswdmel top wall. The
most important contributions are the streamwise convedivd the wall-normal
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Figure 6.26: Mean x-momentum transport balance at x=12.5
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turbulent heat flux.

Close to the source, at= 6.0, the two main contributions profiles are very
similar to those found in the case A (non-buoyant) in thereénégion of the chan-
nel. However, their magnitude increases close to the topamal decreases close
to the bottom one. This can be explained because of the pleffection and the
increase of the mean streamwise velocity near the top whé.tairbulent flux con-
tribution in the upper zone of the channel has to be larger that at the lower
one since this quantity is zero at walls and its gradient @wtall-normal direction
have to be larger in the upper zone. There is a small coniwibof the wall-normal
diffusion term specially significant in the central regidintlee channel. Once the
plume reaches the top wall, at approximatel 12.5, the absolute magnitude of
the streamwise convective and the wall-normal turbulent féwms in the region
close to the top wall are as large as in the center of the cthaAset is observed
in the non-buoyant case, the wall-normal diffusive termdmee significant near the
top wall. The plume never reaches the bottom wall, so this fsrnot significant
there. It is important to note that the position at which theyant plume reaches
the top wall is smaller than that for the non-buoyant cas@s€lo the outlet, the
wall-normal conductive contribution becomes more impartand the wall-normal
convective term become significant as well.
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Figure 6.27: Mean x-momentum transport balance at x=24.0
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Due to the buoyancy forces acting in the wall-normal diagtticase C is the
only case considered with a non-fully developed dynamidfidllong the stream-
wise direction the pressure forces resulting from the measspire gradient are bal-
anced by friction at walls. For case C, the term correspanttirihe non-developed
mean pressure gradient along the streamwise direction malffierent from zero
because of the development of the plume (see term 3 in theiequsa45 for a de-
composition of the mean pressure gradient into a developddaion-developed
contributions). The values for this term are less than 7%hefhean pressure gra-
dient. Therefore this evolution has to be reflected on theutfies related with the
friction on walls. Figure 6.34 shows the profiles of the lofradtion velocity on
both walls along the streamwise direction.

When the plume reaches the top walkat 16, the shear stress and consequently
its friction velocity, increase. The position for the maxim in this profile points
out the location where the plume experiences the most iatemslution. After
attaching the wall, the flow decelerates and the frictioei#y decreases. On the
other hand, on the lower wall the shear stress and the fniatedocity decrease
slightly. It can be seen that the size of the domain along ttgasiwise direction
is not long enough for the flow to reach the fully developedestaAt this stage,
both shear stresses at the two walls would be constant aingirtéan would permit
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Figure 6.28: Mean z-momentum transport balance at x=6.0
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to obtain the corresponding friction velocity value thatuldbbalance the constant
mean pressure gradient. That friction velocity can be esqwé as:

t) (6.3)

where subscriptb andt stand forbottomandtop walls.

n ou”
b 07

TS
T \/2Re \ 97
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Figure 6.29: Mean z-momentum transport balance at x=12.5
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Figure 6.30: Mean z-momentum transport balance at x=24.0
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Figure 6.31: Mean heat transport balance at x=6.0
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Figure 6.32: Mean heat transport balance at x=12.5
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Figure 6.33: Mean heat transport balance at x=24.0
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Figure 6.34: Profile ofi; on both walls
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Chapter 7

Preliminary results of a turbulent
reacting flow

The configuration presented in case A was used to study thalémt disper-
sion in a channel where a reactive is released through teesdarce within a back-
ground flow carrying another reactive. Both species reaptdaduce the product P
following a second order reactioA ¢ B — P). Such reaction is assumed to occur
under isothermal conditions (the heat of reaction is zevdhere are no buoyancy
forces. The concentration at the inlet (the source line)tlier reactant A is set
to Ca(0,y,£Hs t) =1 V z€ [—Hs,Hg] andCa(0,y,zt) =0 V z> [—Hs, Hg] with
Hs = 0.0543. The concentration of B in the background flowCig(0,y,zt) = 0.05
while the product P concentration at the inlet is z€g0,y,zt) = 0. Reactants
enter the channel premixed so the chemical reaction talke® fftom the inlet of
the channel.

The grid resolution used in this case is the same that wasfasedse A.

The concentration fields have been initialized with a cantdtackground con-
centration ofCg(X,y,z,0) = 0.05 andCa(x,y,z 0) = Cp(X,y,z,0) = 0. When the
reactive plume is developed, the sampling procedure to atarthe flow statistics
has been started. The time-averaged quantities have btnaxbwith a sampling
period of 23/u; and consequently the mean results shown in this sectionrave
completely converged.

The time averaged equation 1.21 for a second-order chemngaative system
can be written as:
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0Cq .aﬁ 1 0°Cq aC&u’j S
ot U] 0X; - Re Scox;dx; B 0X; iDa<CACB+CACB> (7.1)

The symbola denotes any of the species involved in the chemical reaction
A and B are the reactants so the sign of the last term on thé higid side of
the equation 7.1 which is the reaction term, is negative abgpecies are being
consumed. Wheu refers to the product P, the sign of this term is positive, so
P is generated. The Schmidt numbeiSis= 1 for all the species. The reaction
term is constituted by the mean reaction aBEACg and the turbulent contribution
Dam. This turbulent contribution appears for orders of reactaoger than 1.

The Damkholer number has been set to 1 so the turbulent anealctive tem-
poral scales are of the same order. When the Damkholer nusbmall, the reac-
tion rate is slow compared to the large scale processeshmflant mixing and the
system can be considered premixed. In this case the reaakies place distributed
over the whole domain and reaction rates are determinedyguyréhe chemical ki-
netics. On the other hand, when the Damkholer number ig |a&gen with respect
to the Kolmogorov time scale of the flow, the reaction occatantaneously as
soon as the reactants meet each other at the molecular'8dade. the reactants are
introduced segregated, the reaction usually occurs in fufrthin reacting sheets,
which form the interface between regions of reactants. &lst®eets are moved
around and strained by the turbulent flow. The rate of readsioin this case, deter-
mined by the amount of mixing at the molecular scale and fisrréason it is said
that the reaction is diffusion limited. Intermediate valwd the Damkholer number
produce reaction rates determined both by the turbulernitipend by the chemical
kinetics.

Figures 7.1, 7.2 and 7.3 show contours of the averaged ctyatien fields for
the three species involved in the reaction. The color sd¢aes been chosen to en-
hance the details of the concentration interfaces. As ibesseen, the reactant B or
the product P mean concentration fields (see figure 7.2 ane3p@&ctively), reac-
tion takes place from the channel inlet because reactatdstiie domain premixed.
The values of the chemical conversion, defined in equatidraf the channel outlet
are around 10%.

X (%) = —x=0__"lx=Lx 1090 (7.2)
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whereF, is the time averaged mass flow defined as:

_ 1 o__
Fy = %/_GCquz (7.3)

Figure 7.1: Mean reactant A concentration field
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Figure 7.2: Mean reactant B concentration field
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The relevant terms of the averaged momentum transportiequae the same
as those presented in equation 3.40 for the case A in sectigittBugh periodic
boundary conditions for the streamwise direction are theaus choice for the
momentum quantities, the buffer region at the inlet of thmpotational domain was
kept to check that non-reflecting boundary conditions @pptiver the momentum
equations have no effect on the results. The balance of thermmentum equation
is shown in figure 7.4. The numbers used to identify the diffiercontributions
correspond to those used in equation 3.40.

The relevant terms of the mean concentration transportequal can be writ-
ten as:
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Figure 7.3: Mean product P concentration field
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Figure 7.4: Mean momentum transport balance (reactive case
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The contribution of the different terms of the equation 704 feactant A is
shown in figure 7.5 at three selected streamwise positionesd profiles are very
similar to those presented for the scalar concentrationdse A. The reaction term
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is much smaller than the terms corresponding to the stresgneonvection, the
wall-normal turbulent flux and the wall-normal diffusionh@ reaction advances as
one moves downstream along the channel but, even=a24.0, the reaction term
represents only a very small contribution to the budget attige A. It is obvious
that at larger Damkholer numbers this term would be largéthe problem would
be more difficult to solve because the smaller time scalethforeactive transport
equations would demand time-splitting schemes to caphatastchemical reac-
tion.

The time averaged balance for reactant B is shown in figure [h.@his case
the reaction term become the most important contributiotheomean transport
equation. The small magnitude of the value of the relevamigemake clear the
need for larger averaging time, specially at downstreanitipas. In spite of this,
the time averaged overall mass balance is fairly well satsfi

Finally, the balance for the product P is shown in figure 7. itthappened
for reactive B, the reaction term is the most important bt nagnitude of the
values of the relevant terms are small. As it was expected,asults for the mean
relevant terms of equation 7.4 for the reactant B and proBarte relative similar
but antisymmetric with respect = 0. In the reacting plume, the product P is
being generated at the same rate as reactant B is being ceddwynthe chemical
reaction. This imply that the gradients have opposite sggnthe convective and
turbulent terms are antisymmetric. The same happens wétls¢loond derivative
for the diffusive term and obviously for the reactive termnagl.
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Figure 7.5: Mean reactant A transport balance at x=6.0, »6=|48d x=24.0
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Figure 7.6: Mean reactant B transport balance at x=6.0, 6=412d x=24.0
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Figure 7.7: Mean product P transport balance at x=6.0, Y6=|42d x=24.0
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Chapter 8

Conclusions

8.1 Multigrid techniques

Multigrid has demonstrated to be the best option for sologson type equa-
tions. This solver consumed CPU times one order of magnisndler than the
conjugate gradient methods for all the cases studied. T$esansidered included
two synthetic cases with Dirichlet and Neumann boundarylitmms with uniform
and non-uniform grids and the pressure calculation case figdty developed chan-
nel flow.

On the other hand, the scalability of multigrid is lower tttaat corresponding
to conjugate gradient methods. The reason lies in the langgranication require-
ments, specially at the beggining of the Full-Multigrid Alithm where adequate
initial solutions have to be found to initialize the smoatffeOR) step in each grid
level. Using 8 processes, the typical valuespéed-ugor any of the synthetic cases
for multigrid is between 2 and 3 while it ranges between 4 afat 6onjugate gra-
dient methods. For uniform grids the CG method requires lem@PU times than
Bi-CGSTAB although thespeed-ups better than that for CG. For non-uniform
grids the situation is opposite. The Bi-CGSTAB, more sué@dbr non-symmetric
matrices, is betweenl and 17 times faster than CG although, in termsspked-
up, the CG exhibit better performance. Scalability differemdetween CG and
Bi-CGSTAB were observed to be small for Neumann boundargitmms and for
uniform and non-uniform grids while they were significant Ririchlet boundary
conditions.

For the pressure calculation of the turbulent flow in a fukweloped channel,
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the CPU times for all three solvers were larger in comparisdh the synthetic
cases because the channel grid resolution is double thanged in the synthetic
cases (25& 130x 130 and 13 130x 130 grid points respectively). Furthermore,
the source terms for the synthetic cases and the fully-dpeel channel flow are
very different in terms of complexity. In fact, for the lastey the source term of
the Poisson equation shows a large range of scales becasss#ociated with a
turbulent velocity field. In contrast, the source term of siyathetic cases is very
smooth.

For instance, the CPU time in arbitrary units for the synthease with Neu-
mann boundary conditions and a non-uniform grid with a shieiy factor ofr =
1.01 (which is the most similar to the pressure calculationeinmt of boundary
conditions type and grid stretching) using 8 processes & C6 and (6 for Bi-
CGSTAB. For the pressure calculation in the fully develogeannel flow, the CPU
times in the same arbritrary units are approximateb/far Bi-CGSTAB and 80 for
CG. For multigrid, the synthetic case take8®time units and for the pressure cal-
culation in the developed channel flow take4 fme units.

8.2 Channel flow configurations

To check the accuracy of the computational code, the meawitglfluctuation
intensities and friction coefficients of a fully developdthanel flow aiRg = 150
have been compared successfully with existing data.

Results of the fully developed channel flowRé = 180 with a scalar source
line vertically centered at the inlet of the channel alsongabgood agreement with
DNS and experiments avaliable in the literature. The teatpee r.m.s. profiles
showed the two peaks associated with the inhomogeneityectdry the walls of
the channel flow at downstream positions away from the solimee The TVD
discretization of the non-linear advective terms avoidsrtbn-physical scalar con-
centration values associated with the sharp scalar gradiegions close the source.

The budget for the time averaged heat transport equationsstiee contribu-
tions of the different relevant terms as the plume disperSésse to the source the
main terms are the streamwise convection and the diffusigdewrbulent flux in the
wall-normal direction. The diffusion and turbulent trangpin the streamwise di-
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rection have no significant contributions. At this locatitme profiles for the three
main contributions are zero at= +0.175 wherez = 0 is the center of the channel
andd is the channel half width. These positions are where thegmadf the mean
temperature with respect to the streamwise direction 1 @aed the position of the
inflection point of the mean temperature profile in the waltmal direction. This
location approaches to the wall at larger streamwise positi The magnitude of
the contributions decreases as the position in the stresardiriection increases and
the plume disperses. When the plume reaches the walls th@eraial molecular
diffusion shows significant values close to them.

The simulation of the mixed convection flow B = 150 andGr = 9.6- 10°
showed low-frequency fluctuations in the mean temperatoudebalk velocity and
required a large channel lengthr@® and a large sampling time period to converge
the statistic quantities. The numerical diffusion asseciavith theupwindmethods
has been quantified comparing the QUICK and the centralatization scheme for
the non-linear advective terms. It has been shown the dajpithe fluctuation in-
tensities and the consequent lower values for the r.m.élggavhen using QUICK.
The results of this simulation showed also good agreemehtpeevious DNS data.

The aiding and opposing effects of the buoyancy on the flowedrimainly
by a mean pressure gradient produce an increase of vetoaitié a decrease of
the fluctuation intensities close to the hot wall. Oppogjtelose to the cold wall,
velocities are decreased and r.m.s. increased. The reéetemperature, defined
as the average between the temperatures of the walls (flligt @xperiences no
buoyancy), lies closer to the hot wall.

The budgets of the time averaged x-momentum and heat trarsgpaations
show that the turbulent transport in the direction normahtowall has large values
near the cold wall but is decreased near the hot one. Opjyo#fite viscous stresses
are larger near the hot wall and are decreased near the aald on

The simulation of a buoyant plume required a buffer regioprtivide adequate
boundary conditions. This increased the computationalirements significantly.
The buoyancy forces drifted the temperature plume towdrelsap wall. This de-
flection produces positive values of the time averagedacadrtielocity component
which are small in comparison with its fluctuation intensitiie mean velocity pro-
files of the streamwise velocity component near the bottothaedlapsed on the
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universal profile using the wall scaling. However the presfitdose to the top wall
show smaller values of the streamwise velocity componerthéncentral region
of the channel. The fluctuation intensities of the strearawislocity component
are increased near the top wall and slightly decreased hedrsdttom one. The
evolution of the mean velocity profiles at different posisan the streamwise di-
rection show that at = 1250 the plume evolves faster than close to the outlet and
its development is more intense. In fact, the plume readiesop wall near this
position where the local friction velocity on the top wallsha maximum. On the
other hand, the local friction velocity of the bottom wallcdeases monotonically
as the streamwise position is increased. The value of the pregsure fluctuation
gradient arising from the developing conditions of the fleNess than 7% of the
mean pressure gradient. Its contribution to the mean x-mtumebalance is small
compared with other terms.

The mean temperature profiles at different streamwiseiposishow maxima
near the top wall as the plume is deflected upwards The maxiralue of the
mean temperature profile is decreased as the position aienstieamwise direc-
tion is increased and the width of the profile (associateth Wie plume vertical
dispersion) is increased. This can be explained consigi¢hia vertical movement
imposed by the plume deflection. The vertical plume disper& produced by the
advective and diffusive transport mechanisms and it is ecéhin comparison with
the non-buoyant case by the buoyancy effect. The r.m.s.|lggdbr temperature
for the non-buoyant case showed two peaks symmetricalgtéocaround = 0. In
the buoyant case this symmetry does not exist and the ityesfsiluctuations is
decreased at locations far from the source. Near the sae@pper peak which
is located close to the top wall is larger than that corredpanto the non-buoyant
case.

The budget for the time averaged x-momentum transport egustiows that the
wall-normal viscous and turbulent flux terms are the maintrdoutions. Near the
position where the plume reaches the top wall and evolvesrfabe wall-normal
and streamwise convective terms become significant camitits near the top wall
but they are decreased near the channel outlet when the Haineady attached to
the wall. Close to the inlet, the wall-normal viscous andtlent flux terms have
similar values for both regions close to the walls but farthey decrease close to
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the bottom wall and they increase close to the top one.

The relatively small positive value of the mean verticabe#ly component ex-
plains the small contributions of the wall-normal conveetand diffusive terms to
the budget of the mean z-momentum transport equations. ddyahbcy contribu-
tion, proportional to the mean temperature, is importat it&ymaximum moves
upwards as the position in the streamwise direction is as®d. This term is al-
ways zero near the bottom wall because of the plume defletimards the top
wall. The pressure gradient evolves along the streamwigetdin balancing the
contribution of the buoyancy together with the wall-normabulent term.

The profiles for the mean heat transport equation contohstare similar to
those at the non-buoyant case. Close to the source, the tmocomaributions, the
streamwise convective term and the wall-normal turbulen, fare very similar to
those found in the non-buoyant case in the central regiohethannel. The tur-
bulent flux term in the upper zone of the channel close to thevall is larger than
that of the lower one since this quantity is zero at walls asdiadient in the wall-
normal direction has to be larger in the upper zone. Theresimall contribution
of the wall-normal diffusion term specially significant inet central region of the
channel. Once the plume reaches the top wall, the magnifutie streamwise con-
vective and the wall-normal turbulent flux terms in the regatose to the top wall
are as large as in the center of the channel. As it is obsenvétkinon-buoyant
case, the wall-normal diffusive term becomes significarrriee top wall. The
plume does not reach the bottom wall, and consequentlyehs in not important
in this region. Close to the outlet, the wall-normal condwectontribution becomes
more important and the wall-normal convective term becosigsficant as well.

Preliminary results of a turbulent reactive flow in a fullyvééoped channel
have been also reported. The contributions of the diffefembs of the time av-
eraged budget of the concentration of the chemical spebs that for the most
concentrated reactive (introduced through the line sQuhmereaction term is not
important in comparison with the streamwise convectioaytiall-normal turbulent
term and the wall-normal diffusion. The molecular diffusiterm increases near
the walls where the plume reaches the walls. However theiogaterms of the
budgets of the diluted reactive and the product have an irapocontribution in
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comparison with the other terms.
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Chapter 9
Future work

The simulations performed in this work have considerecediifit channel flow
configurations involving heat and mass turbulent transfporh discrete and wall
sources. These flows are complex because transport of momghéat and mass
can be coupled and the equations governing the flow dependrmus parameters.
This type of flow can be easily found in different industriatizenvironmental appli-
cations including combustion, electronic device coolingimospheric dispersion.

The results shown in this work were obtained using Direct Huioal Simula-
tions which provides detailed information about the tuentitransport of momen-
tum, heat and mass. However, in real world applications,ttige of tools were not
often suitable to provide answers due to prohibitive corapomal requirements.
This could be the case of very large Reynolds numbers as foasel in atmo-
spheric boundary layer. Keeping this in mind, the future kmsisues providing
continuity to this work, can be summarized as:

e Study the effect of the non-dimensional parameters (Gfasteynolds and
Prandtl numbers) on the turbulent transfer of quantitiescéses B and C.
These parameters affect the ratio between the buoyanay émdt the viscous
force, the ratio between inertial forces and viscous foerekthe ratio of mo-
mentum and thermal diffusivities, respectively. Probablyarametric study
changing the Grashof number would be interesting becabse i main role
in the development of the buoyant plume in case C. It is ingmtrtb note that
larger Grashof numbers imply larger computational resegirc

e Simulate different chemical reaction mechanisms with dheuat heat gen-
eration effects and implement the dependence of reactienarad the heat
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of reaction on temperature. In practice, the heat of reacrml the reaction
kinetics constants depend on temperature. This effect eatudied in order
to simulate real reactive systems.

e Filter the DNS to study the sub-grid scale effects on the flod/@evelop and
propose subgrid scale (SGS) models for buoyant and/oriveagstems in
wall-bounded flows.

e Built a computational atmospheric boundary layer scenati@ducing ru-
gosities for different types of terrain to study its effenttbe dispersion of re-
active contaminants released in the lower atmosphere.mbdéel may allow
to introduce different atmospheric conditions and othéxat$ like radiation
that can affect the reaction rates. This simulation woutpliire a valid SGS
model to simulate flows at very large Reynolds numbers astfoosd at the
atmospheric boundary layer.

From a computational performance point of view, possiblpromements for
the current CFD code can include:

e Implement an adaptative grid refinement approach to opgimaznputational
resources by using different grid resolutions accordirity Wie different mul-
tiscale turbulent features involved in the line source elispn processes. A
very fine grid can be used in the regions close to the sourceanthe gradi-
ents are larger. This fine grid is embedded in progressivdyser grid levels
for locations far from the source where gradients are notrgmrtant.

¢ Implement the multigrid strategy to solve the whole setahgport equations
adapting the parallel multigrid solver that is being usedtfe numerical
solution of the Poisson equation for the pressure calcuati
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List of notation

G Concentration $peciest (mol/m?)
O o ateapacity J/mol K)
DA e Damkholer number
DD Binary diion coefficientif?/s)
o R @ity accelerationrf)/s?)
] Grashof number
N Enthalpyd/kQ)
Ho oo Source line sizenf)
Joj oo Molecular flux of speciasn the directionj (mol/n?s)

K o Reaction rate cons{ant order) (/s mo)

L Domain sizer)
M o Mesh length of the turbulesgenerating gridnf)
0 Pressurdg)
P Prandtl number
L e e e Reaction ratergiol/m?s)
R o Universal Cardtfor gases)/mol K)
Re .. Reynolds number based erfriktion velocity
S e Schmidt number
T TemperatureK()

L Timeg)
U et ettt e e e Friction velocity (n/s)
Ve Volume i)
X+ e e e e Space coordasah the directiom (m)

X e Spatial coordinates in ttre@mwise directionnf)
V22 Spatial coordinates ia panwise direction)

Z Spatial coordinates in thélamarmal direction ()
T Velocity componemthe directioni (m/s)
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U ottt Streamwiseooitly componentrf/s)
Ve Spanwiseoaily componentrfy/s)
W ot Wall-normal weity componentrt/s)
/S Density of speciea

o o Therndifusivity (nm?/s)
B o Thermal empian coefficienti{ 1)
T Kronecker delta
A Enthalyf reaction §/mol)
K ettt e Therrmoahductivity (V/m K)
et e yramic viscosity Pa 9
Ve Iématic viscosityif?/s)
o I Density §/m°)
PP Shear stresd)
D Pressure correctiorrg)
S Biigation function Pa/s)

Subscripts, superscripts and symbols

() MIS = v v e ettt e e e e a® mean square
G Refered toy
G 1T Refered to species
T Normal direction
G Refered to wall
) dimnensional quantity
[ Time-averaged
() e e Fluctuation
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